Slope of the Secant Line

To find the slope of the secant line, we use the formula

\[m_{sec} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \] \hspace{1cm} (1)

You need to know this formula. The \(x \) represents the starting point of your interval. The \(\Delta x \) is the distance from \(x \) to the end of your interval.

Example 1 Identify the \(x \) and \(\Delta x \) for the interval \([2, 10]\)

Solution 1 \(x \) is the start of the interval, so \(x = 2 \). \(\Delta x \) is the distance to the end of the interval, so \(\Delta x = 10 - 2 = 8 \).

Example 2 Identify the \(x \) and \(\Delta x \) for the interval \([-3, 7]\)

Solution 2 \(x \) is the start of the interval, so \(x = -3 \). \(\Delta x \) is the distance to the end of the interval, so \(\Delta x = 7 - (-3) = 10 \).

Example 3 Find the slope of the secant line of \(f(x) = 2x - 3 \) for the interval \([2, 10]\)

Solution 3 \(x \) is the start of the interval, so \(x = 2 \). \(\Delta x \) is the distance to the end of the interval, so \(\Delta x = 10 - 2 = 8 \). Now we plug into formula (1).

\[
\begin{align*}
m_{sec} &= \frac{f(x + \Delta x) - f(x)}{\Delta x} \\
&= \frac{f(10) - f(2)}{8} \\
&= \frac{[2(10) - 3] - [2(2) - 3]}{8} \\
&= \frac{17 - 1}{8} \\
&= \frac{16}{8} \\
&= 2
\end{align*}
\]

S. I. Van De Car, 02/04