Chapter 18

CONFIDENCE INTERVALS FOR PROPORTIONS

STANDARD ERROR

- Estimates the theoretical standard deviation of the sampling distribution for sample proportions based on a single sample:

\[SE(\hat{p}) = \sqrt{\frac{\hat{p}\hat{q}}{n}} \]

A CONFIDENCE INTERVAL

- By the 68-95-99.7% Rule, we know:
 - About 68% of all samples will have \(\hat{p} \) within 1 SE of \(p \)
 - So we are 68% sure \(p \) lies within one SE of \(\hat{p} \)
 - About 95% of all samples will have \(\hat{p} \) within 2 SEs of \(p \)
 - So we are 95% sure \(p \) lies within two SEs of \(\hat{p} \)
 - About 99.7% of all samples will have \(\hat{p} \) within 3 SEs of \(p \)
 - So we are about 99.7% sure \(p \) lies within three SEs of \(\hat{p} \)
- These are confidence intervals
CONFIDENCE INTERVALS

- An interval of values that is fairly certain to contain the true value of the population parameter of interest
- The degree of confidence reflects the frequency of times that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times.

VISUALIZING CONFIDENCE INTERVALS

MARGIN OF ERROR: CERTAINTY VS. PRECISION

- We can claim, with 95% confidence, that the interval \(\hat{p} \pm 2SE(\hat{p}) \) contains the true population proportion.
 - The extent of the interval on either side of \(\hat{p} \) is called the margin of error (ME).
- In general, confidence intervals have the form estimate ± ME.
- The more confident we want to be, the larger our ME needs to be.
CRITICAL VALUES

- The ‘2’ in $\hat{p} \pm 2SE(\hat{p})$ (our 95% confidence interval) came from the 68-95-99.7% Rule.
- Using a table or technology, we find that a more exact value for our 95% confidence interval is 1.96 instead of 2.
 - We call 1.96 the critical value and denote it z^*.
- For any confidence level, we can find the corresponding critical value.

CRITICAL VALUES (CONT.)

- Example: For a 90% confidence interval, the critical value is 1.645:
ONE-PROPORTION Z-INTERVAL

- The confidence interval for the population proportion \(p \) is
 \[
 \hat{p} \pm z^* \times SE(\hat{p})
 \]
 where
 \[
 SE(\hat{p}) = \sqrt{\frac{\hat{p}\hat{q}}{n}}
 \]
- The critical value, \(z^* \), depends on the particular confidence level that you specify.

INTERPRETING THE INTERVAL

Don’t Misstate What the Interval Means:
- Don’t suggest that the parameter varies.
- Don’t claim that other samples will agree with yours.
- Don’t be certain about the parameter.
- Don’t forget: It’s the parameter (not the statistic).
- Don’t claim to know too much.
- Do take responsibility (for the uncertainty).

CHOOSING YOUR SAMPLE SIZE

- In general, the sample size needed to produce a confidence interval with a given margin of error at a given confidence level is:
 \[
 n = \left(\frac{z^*}{ME} \right)^2 \hat{p}\hat{q}
 \]
 where \(z^* \) is the critical value for your confidence level.
 - To be safe, round up the sample size you obtain.