Synchronous and Asynchronous Transmission – An Introduction to the Technologies

Introduction

Many students of the Cisco Networking Academy Program (CNAP) have not studied the technology of data communications before they commence their study of internetworking. Whilst the Cisco program is not designed to give more than an overview of data transmission issues, none the less, there are times in the course when the issue of synchronous vs asynchronous links arises. It is the author’s experience that many students are not very clear on what the difference is between these two methods of transmission of digital signals. It is the intent of this short paper to assist in dispelling any confusion and misunderstandings.

Simple Transmission of Digital Data

The title of this chapter is almost a misnomer! There are certainly many difficulties associated with transmitting digital signals any considerable distance. However, it is not the intent of this article to discuss those. There are many excellent books on the subject (1). Many of them, however, do require a good advanced understanding of maths. What we intend to look at is just one of these issues surrounding transmission – transmitter and receiver synchronisation. Although there are many complex methods for encoding and transmitting digital signals on a serial link, for the purposes of this paper, we will assume simplistic issues to explain the concepts involved. Assuming a binary system ie one that only uses two discrete state signals, the first important issue is determining what constitutes a ‘one’ and a ‘zero’. This can take many forms at the physical level. For example, a binary one could be transmitted as a signal that is 5 volts in amplitude and is maintained at the 5v level for 10ms. Clearly, since there are 100 10ms ‘timeslots’ in one second of time, then if such a signal were to be transmitted on a serial line, one bit after another, we could only send 100 of them each second. 


[image: image1.wmf]Time in mS

(advancing)

01011101010110

 10ms "clock"

data in

here

data storage - 'shift register'

+5v

0v

"twisted pair"

data

clocked

out here

????????????

"clock" - where?

sample and discriminate

"twisted pair"

Signal

amplitude in

volts

+5v

0

10ms

20ms

30ms

The first binary '1'

The next binary '1'

0

?

received

signal


This equates to a (serial) link speed of 100 ‘ones’ per second. Now, if a binary zero were to be considered as a signal whose amplitude was zero volts for the same time-slot, then we could equally transmit 100 zeros each second. In reality, the signals that we wish to transmit will probably consist of random – and unknown – amounts of ones and zeros. (If they weren’t unknown, there would be little point in transmitting them! This is a fundamental issue in information theory.) Since each of the two values has an equal probability of appearing (intuitively, why should there be more ones than zeros in any very long binary sequence?), we can say that the link has a transmission speed of 100 bits per second, where the word ‘bit’ is a shortening of the term ‘Binary DigiT’.

At the transmitter, all this is – intuitively – simple. We require some form of storage for a collection of bits (a buffer or register). Next, we must feed them serially to a transmission line, one at a time, where they will assume either our 5v or 0v level for a fixed period of time. Now, if a voltage of 5v is applied at one end of a piece of wire, then some short time later, it is apparent that something approaching that same voltage will appear at the other end. It’s not quite that simple, but it is an assumption that will hold for the present. At the transmitter, we just need an electronic circuit known as a ’clock’ that can hold the voltage level on the serial line at the required 5v or 0v for a fixed period, and arrange for the next sequential bit to then be presented at the end of that period. The voltage corresponding to the next bit to be transmitted to the line must then be maintained for the same fixed period, at a value that corresponds to its binary value, but obviously subsequent in time to the previous bit. (We can’t go back in time!) This will continue until all the stored bits have been transmitted.


[image: image2.wmf]Time in mS

(advancing)

01011101010110

 10ms "clock"

data in

here

data storage - 'shift register'

+5v

0v

"twisted pair"

data

clocked

out here

????????????

"clock" - where?

sample and discriminate

"twisted pair"

Signal

amplitude in

volts

+5v

0

10ms

20ms

30ms

The first binary '1'

The next binary '1'

0

?

received

signal


‘The Transmitter’

Now consider the receiver. Hopefully, it will receive a series of voltages at its input connected to the serial link that vary between 0v and 5v. What do they indicate? Sure, I can build some sort of ‘discriminator’ circuit that indicates a binary one every time the voltage exceeds some threshold, or a binary zero every time the voltage is less than some threshold. (In reality, I will probably discriminate based on the 50% level – i.e. >2.5v indicates a one and <2.5v indicates a zero). The problem is, how ‘long’ is a one or a zero? When presented with a 5v signal, do I assume it represents 1, 2 or 3 binary ‘ones’? If the transmitter had held the voltage at 5v for, say, four 10mS periods, does the receiver recognise that as one, two, three, four or even more binary ones? There must be some point, or period, in time when I apply the discrimination (known as ‘sampling’) to the received pulse and accept it as a one or a zero. In addition, that period must relate to the same period in time when the transmitter transmitted the voltage. In reality, we probably want to delay the discrimination for a short period in time after the transmitter sent the pulse, since electricity can’t travel along a line instantly. There is a delay between transmission and reception, known as propagation or transmission delay – and, yes, it is very short but real!


[image: image3.wmf]Time in mS

(advancing)

01011101010110

 10ms "clock"

data in

here

data storage - 'shift register'

+5v

0v

"twisted pair"

data

clocked

out here

????????????

"clock" - where?

sample and discriminate

"twisted pair"

Signal

amplitude in

volts

+5v

0

10ms

20ms

30ms

The first binary '1'

The next binary '1'

0

?

received

signal


The receiver

It is this issue that is known as synchronism, and it is the major issue discussed here. We say the transmitter and receiver are synchronised (often described as ‘in sync’) when the receiver ‘knows’ exactly when, in time, to sample and discriminate the received pulse (voltage) with respect to its transmission from the transmitter. If it is too early or late, it could misunderstand the value of the transmitted digit, seeing a one as a zero or vice versa. Intuitively, the most appropriate time to sample the received pulse will be around the centre of the time period during which the transmitter is maintaining the voltage, whether it is 5v or 0v. In our simple example, about 5ms after the transmitter first applied the voltage to the line would be a good point. Then, any misunderstanding is likely to be lessened.


[image: image4.wmf]Current

Time

'Mark'

'Space'

'Mark'

'Space'

'Space'

STOP

START

idle line

current

idle line

current

5 Unit Telegraph Code

propagation or

transmission

delay

where is best to sample value?

is this a single bit or multiple bits?

best to sample value about here -

BUT how does receiver 'know'

this?

transmitted signal

received signal


Sampling problem

The question that then arises is, how do we ensure that the two ends are synchronised in time? It is rather like having two independent pendulums. How can we ensure that they both swing at exactly the same? Well, in reality, we can’t – at least, not for all time. If they are truly independent, and there is no connection between them, then the best we can hope for is that, if started at exactly the same point, they will swing in synchronism for a period long enough for us to achieve what ever we need to do. If we really do need them to both swing at exactly the same time, then we will need some form of dependency between them. In simple terms, if one should get faster or slower than the other, we need to slow it down or speed it up to maintain the synchronism. Ideally, we should do this at each swing. As one – call it the master – reaches the furthest point of its swing, it should give the other – the slave – a ‘kick’ to make sure it stays in sync. This implies that there will be some sort of mechanical, or electrical, connection between them. In fact, these two examples, of independence or dependence are, in essence, the principles of asynchronous and synchronous transmission.

Asynchronous Transmission – the Beginnings

As is often the case, we need to look back in time to understand where these issues derived from. In this case, we need to look back two centuries – to the latter part of the 19th century when the world was spanned by telegraph cables, and telephony was in its infancy. 

Early telegraphy used the Morse code and human operators at each end who used a key with an audible sound. The ability to decode a Morse message was a learned skill, practiced by human operators. However, there were many reasons for wanting to mechanise the sending of telegraph messages. Amongst these were speed (Morse operators could only keep up a certain speed for a short period of time); accuracy and revenue. The more messages that could be sent over a fixed line, the more revenue! (Sounds familiar…..). Obviously, a message sent by an unvarying machine would be faster than a message from a human operator. However, if the transmitter is a machine, then a mechanical device had to be developed that could ‘read’ the received signals (voltages) on the telegraph line, and turn them into printed text. In addition, as described above, this printer had to be able to discriminate between multiple signals, whether ones or zeros and determine what the transmitter had sent. As indicated above, this discrimination required the receiver to know ‘where’ (ie at what point in a time continuum) to read the signals, as well as what each value meant.

One of the great problems in early telegraphy was this issue – how to determine what a line signal represented? A Morse code operator was able to use deductive powers to determine the meaning behind the dots and dashes, but a machine can’t think! Interestingly, it was this issue that led to the demise of Morse as an encoding technique. Morse is a variable length code (different lengths for different characters), and it does not lend itself to use with machines. The printer designers needed a fixed length code (ASCII is a more recent example), and developed a number of them (Baudot code, Murray code etc). They also needed synchronism between the transmitter (which was often a paper tape reader, that read a tape that had been punched by a human operator on a special punch machine ‘offline’), and the printer-receiver if such recognition was to be accurate. In fact, various methods were developed. Most appeared to use constantly rotating motors that were synchronised by some correcting pulses occasionally sent down the line. At least one system used swinging pendulums (see above!) However, this was all fairly cursory, and the early attempts were not remarkably successful. Note that this attempt to maintain synchronism between transmitter and receiver over a lengthy period of time – certainly spanning many characters – is what we would today call synchronous transmission. 

Then in 1906, two inventors, Morkum and Krumm developed a machine that did not require this synchronism to be maintained. The transmitter and receiver were allowed to rest between the transmission of characters. Then, before the next character was transmitted, a special pulse known as a start pulse was initially transmitted. This was designed to always be a transition from one specific level on the line (known as the idle level) to another. At the receiver, this pulse started a motor spinning, which was reasonably constant in speed. As the pulses that constituted the character (5 in those days) arrived, they could be read by a series of simple electromagnets that were activated by a series of studs on the motor face, over which a commutator passed. The fact that the motor at the transmitter might be slightly slower than the receiver didn’t matter, as at the end of the character, a stop pulse was sent which stopped the motor. (To be more accurate, it removed current from the motor so it coasted to a halt). Of course, it DID matter if the receiver were slower than the transmitter, and so the receiver motors were always made to rotate slightly faster than the transmitter (about 0.5% faster). It was a simple task to build motors that were sufficiently close in rotational speed so that the difference would be marginal, and the motor only had to maintain speed synchronism for one rotation. Recall that this difference didn’t matter, since at the start of every character, the motor was started (‘kicked off’) again. This method was known as stop-start transmission, or what we now call asynchronous transmission. It proved extremely successful, and by the 1920’s, virtually all mechanical telegraph printers used such a system. Later innovations synchronised the motors to the ac mains frequency of 50 or 60Hz, and it was this system that was used by the teleprinters on the automatic telex system. Incidentally, the Telex system is no more, and Morkum and Krumm’s invention was given the name Teletype.


[image: image5.wmf]Current

Time

'Mark'

'Space'

'Mark'

'Space'

'Space'

STOP

START

idle line

current

idle line

current

5 Unit Telegraph Code

propagation or

transmission

delay

where is best to sample value?

is this a single bit or multiple bits?

best to sample value about here -

BUT how does receiver 'know'

this?

transmitted signal

received signal


Start – Stop Transmission

You should note two very important issues associated with asynchronous transmission. The first is that it doesn’t matter at all when the next character is sent to the line (as long as it is after the previous one has finished!). In fact, the spacing between characters can be completely random. Each character is a ‘package’ in its own right, encapsulated in a start – stop pulse pair. This is, of course, hugely advantageous to a keyboard user (sender), who would otherwise have to maintain a constant cadence. The second issue is that there is a high overhead of redundant material transmitted. If the character code used five bits, as many teleprinters did, then the overhead was 2/7 or about 28% if the start and stop pulse were the same length of time as the character bits. In fact, most printer motors required more than one bit length of stop pulse, often using a pulse 1.5 to 2 times the length of a bit pulse. This increased the overhead even more.

Enter the Computer

The first computers were designed at a time when cathode ray technology was in its infancy. Certainly early computers did not use screens for human – machine interaction. Not surprisingly, since printed records were considered useful, and a keyboard was needed to input information, the teleprinter proved to be the input/output tool that fitted the task. Consequently, most early computer users interacted with the machine via a teleprinter. Since the science of telegraphy was well understood, and teleprinters readily available, the circuitry internal to the computer replicated that found in telegraph systems. As technology advanced, CRT screens and electronic keyboards started to become more commonly available, but were often connected to serial interfaces that would previously have used a teleprinter. It was simpler to replicate in the electronic terminals the asynchronous systems previously used for electromechanical machines. In reality, there was no need for a ‘stop’ pulse as such – there was no motor to stop! – but standards had been defined and it remained in use, now delimiting one character from the next by returning the serial line to its idle value. In addition, there was no motor synchronised to the mains supply (remember, this had become the standard method of ensuring the motors rotated at a constant speed in later teleprinters). The terminal designers had to build electronic circuits that replicated these functions – so called clock circuits. The early electronic clock circuits were unsophisticated in their ability to maintain a constant output frequency, so the start and stop process was particularly appealing. If the clock frequency drifted slightly with age or temperature, it didn’t matter as long as the drift was not too severe over the reception of eight to ten pulses. The reception of the next start pulse would ‘start’ the clock all over again. The proliferation of this type of interface was instrumental in the original PC having an asynchronous serial port built into its circuitry – the COM1 port – and this ensured asynchronous transmission was not about to fade away! It is, of course, still with us today. The link between PC and modem in a dial up system is, most likely, an asynchronous transmission system. However, on all but the simplest of long haul serial links, asynchronous transmission has been replaced by its older sibling, synchronous transmission.

Synchronous Transmission

It has already been stated that most early attempts at mechanical printing across a telegraph line were synchronous. There were many attempts, some more successful than others, to maintain the synchronism required between the inevitable motors at the transmitter and receiver so the received signals could be correctly decoded. The introduction of start-stop working stifled further research into synchronous transmission for many years. However, the disadvantages were also recognised. Of these, a major disadvantage is loss of transmission revenue. Operators of expensive lines want to transmit as much revenue-generating traffic as possible. Why waste precious bandwidth on start – stop bits? In addition, as line speeds increased, it became obvious that longer bursts of data needed to be transmitted to make use of that speed. The problem was – how to maintain synchronism between the ends of the link so that the received data could be correctly decoded? What was needed was some form of synchronising pulse that activated the discrimination of a received signal at the correct time, and continued to do so over, possibly, thousands of signal pulses.

One easy way to do this is to have a third lead that carries a clock signal. Easy? Yes. Practical – no! Telephone (and telegraph) lines are, inherently, two wire circuits, so a third wire in all but the shortest of links was quite infeasible. Somehow, we needed to do as the early telegraphists had done, and send ‘correcting currents’ to the line to ensure the two ends stayed in sync. The problem is that if we are not careful, we end up with something that looks remarkably like a form of asynchronous working. Many electronic clock circuits cannot maintain synchronism for more than a few hundred time slots, or ‘bit times’ without drifting out of sync. Maintaining long term independent synchronism requires expensive, temperature stabilisation circuits and other electronic ‘gizmos’. What we need is a signal that can be ‘piggy-backed’ on the data signal at the transmitter, and extracted at the receiver to provide a synchronising pulse for the clock circuit. This pulse can then be used as a constant correction, ensuring the two ends remain in synchronism as long as a signal is being transmitted. Such a system is known as embedded clock transmission, and is the method generally used in synchronous systems today.

Embedding the Clock

Most students of networking will quickly be introduced to the dominant local area networking media access and signalling method in use today – carrier sense, multiple access with collision detection technology, or as it is more popularly known, Ethernet. The signal encoding method used on the original 10Mb/s Ethernet systems is a good example of synchronous transmission on a serial link that incorporates an embedded clock signal. (Unfortunately, it is also a very poor example of synchronous transmission signal encoding on physically lengthy links – but more of that later). 

Ethernet uses a method of embedding the clock into the data bit stream known as Manchester encoding. A Manchester encoded signal does not merely use, for example, a constant signal of one polarity, maintained for a bit-cell length of time, for one binary value, and a similar, but different polarity for the other. Rather, each binary value is encoded as a signal that either has a positive or negative going transition in the middle of the bit cell. Recall that discrimination of a value best takes place at the centre of the bit cell. In this case, it is the transition that determines if the value is treated as a one or a zero. In addition, since there must, by definition, be a transition at the centre of every cell, it is relatively easy to also use that transition (after electronic processing) as the synchronising pulse that ensures the transmitter and receiver stay locked in synchronism.


[image: image6.wmf]1

1

1

1

0

0

0

0

+ve

transition

= 1

-ve

transition

= 1

1 bit cell =

100ns

Clock Pulse

Manchester

Encoded waveform

(transmitted)

Data Pattern

Manchester Encoding ensures clock pulse can be extracted
At this stage, the major problem with synchronous signalling should be understood. For example, a normal bit stream of signals that are encoded using the simplistic scheme first discussed (+5v for a one and 0v for a zero) will also have transitions. Why not use these to provide the synchronising pulses? The answer is that we cannot guarantee them! If the data to be transmitted consisted of, say, 1024 ‘zeroes’, then there would be NO transition for that many bit cells – almost guaranteeing that synchronism would be lost. With sync lost, where in time does the receiver start looking (sampling) at the received signals?

This means that all synchronous systems must use some method to ensure that there are no more than a few (where a few is not defined!) subsequent bit cells of the same value, without a transition to maintain sync. As mentioned, whilst Manchester encoding works well, its main downfall is that it uses a fundamental clock frequency of twice the bit rate ie the transmitter clock is 20MHz for a transmitted bit rate of 10Mb/s. This means that our serial link must be capable of handling higher frequencies, not to get the data sent faster, but to maintain a clock! In reality, there are many other techniques used, including pseudo random scrambling of bit streams; stuffing extra bits in a stream to ensure transitions; inverting every other one, etc. The method used on a particular system will often be a trade off between signalling issues and transmission (i.e. signal power) effectiveness. However, they all attempt to ensure that the receiver’s clock will stay synchronised to the transmitter’s and that the bit stream can be successfully decoded.

At this point, you might ask ‘what happens when there is no data being transmitted?’. Well there are two solutions. One, used in Ethernet is to allow the frames to be transmitted at random times, but ensure there is a lengthy synchronising signal sent before the start of the data proper. This is, of course, the ‘preamble’ field of an Ethernet frame. In this respect, the frame itself is sent asynchronously, where the preamble relates to the “start bit” and the inter-frame gap relates to the “stop bit”. However, during transmission, the bits are sent synchronously – leading to Ethernet being described as ‘Frame asynchronous – bit synchronous’ transmission.

The alternative solution, used on most ‘long’ serial links is to constantly transmit a synchronising signal, even when there is no data being transmitted. This means that each data frame must incorporate some method of indication that it is about to start. Such an indication is known as a ‘flag’, and most modern synchronous serial links use this technology. The synchronising signal will be a series of signal transitions, constantly transmitted, thus ensuring that synchronism is maintained and ready for immediate transmission of information.

Conclusion

The history of telegraphy is a fascinating subject, and there are many excellent references for further reading. It is quite enlightening to see how many of the problems we face today were faced – and often solved – well over a hundred years ago. This paper has looked at just one, and attempted to explain the issues surrounding asynchronous and synchronous transmission systems by relating them to their early beginnings in telegraphy. Whilst many of the topics associated with these methods have been only cursorily explained, it is hoped that it has given the reader sufficient understanding to be able to relate to the differences between the two. Certainly, it is my belief that this interpretation is of a level that is sufficient for the CCNA course. However, I welcome comments on ways to improve this understanding, and invite you to email me with these. I can be reached at:

weavem@ecentral.training.wa.gov.au
Mike Weaver
Perth
Western Australia

June 2001

References:

McNamara, J; Technical Aspects of Data Communications; Digital Press, Maynard, MA; 1978

Bissell C C and Chapman D A; Digital Signal Transmission; Cambridge University Press, Cambridge, UK; 1992

Synchronous and Asynchronous Transmission © M Weaver Perth 2001


_1050927845.unknown

_1050927846.unknown

_1050950656.unknown

_1050927843.unknown

_1050927844.unknown

_1050908150.vsd

