The chemical energy produced via photosynthesis is stored in the bonds of sugar molecules.

Biology	and	Society:
Riofuole		

Dioru	eis				
•	Wood has	s historically been t	he main fuel used to produce	Organism	s that use photosynthesis are
	_	heat and		_	photosynthetic autotrophs and
	_	light.		_	the producers for most ecosystems.
Figure	e 7.0			Figure 7.1 Figure 7.1a Figure 7.1b	
•	Industriali	zed societies repla	ced wood with fossil fuels including	Figure 7.1c Chloroplasts: Site	es of Photosynthesis
	_	coal,		Chloropl	asts are
	_	gas, and		_	the site of photosynthesis and
		oil.		_	found mostly in the interior cells of leaves.
•	investigat		s of fossil fuels, researchers are ass (living material) as efficient es.		loroplasts are interconnected, membranous sacs /lakoids, which are suspended in a thick fluid called
•	There are	several types of b	iofuels.	Thylakoic	ls are concentrated in stacks called grana .
	_	fermentation of	type of alcohol produced by the glucose made from starches in rains, sugar beets, and sugar cane.	light-abso	n color of chloroplasts is from chlorophyll , a orbing pigment that plays a central role in converting rgy to chemical energy.
	_	Bioethanol may	be used	Stomata	are tiny pores in leaves where
		_	directly as a fuel source in specially designed vehicles or	_	carbon dioxide enters and
		_	as a gasoline additive.	Figure 7.2-1 Figure 7.2-2	oxygen exits.
	_		nol is a type of bioethanol made n nonedible plant material such as	Figure 7.2-3 Figure 7.2a Figure 7.2b Figure 7.2c Figure 7.2d	
	_	Biodiesel is mad	de from plant oils or recycled frying	The Simplified Ed	quation for Photosynthesis
THE	BASICS OF	PHOTOSYNTHE	SIS	reactants	erall equation for photosynthesis, notice that the of photosynthesis are the waste products of cellular
•	Photosyr	nthesis		respiratio Figure 7-UN01	n.
	_	is used by plant bacteria,	s, algae (protists), and some	In photos	ynthesis,
		transforms light	energy into chemical energy, and	_	sunlight provides the energy,
	_	uses carbon dic materials.	xide and water as starting	_	electrons are boosted "uphill" and added to carbon dioxide, and
				_	sugar is produced.

•	During photosynthesis, water is split into		Could this info	rmation determine which wavelengths osynthesis?
	hydrogen and			
	oxygen.			eking bacteria will congregate nearing the most photosynthesis.
	Hydrogen is transferred along with electrons and added to carbon dioxide to produce sugar.	Experiment	t: Engelmann	
	Oxygen escapes through stomata into the atmosphere. synthesis Road Map	_		of freshwater algal cells in a drop of nicroscope slide,
•	Photosynthesis occurs in two multistep stages:	_	added oxyge	en-sensitive bacteria to the drop, and
	the light reactions convert solar energy to chemical energy and	_	used a prism on the slide.	to create a spectrum of light shining
A Photo	the Calvin cycle uses the products of the light reactions to make sugar from carbon dioxide.	Results: Ba	acteria	
•	The initial incorporation of carbon from the atmosphere into organic compounds is called carbon fixation .	_		egated around algae exposed to and blue-violet light and
	organic compounds is called carbon invation .	_	rarely moved	I to areas of green light.
	This lowers the amount of carbon in the air. Deforestation reduces the ability of the biosphere to absorb carbon by reducing the amount of		nge part of the	s absorb light mainly in the blue-violet e spectrum.
Figure Figure THE L		Chloroplasts	s contain seve	eral pigments:
	ICAL ENERGY	•	Chlorophy	ıll a
•	Chloroplasts		<u> </u>	absorbs mainly blue-violet and red light and
	are chemical factories powered by the sun and		_	participates directly in the light
Figure	convert sunlight into chemical energy. 7-UN02			reactions.
	ture of Sunlight	•	Chlorophy	dl b
	Sunlight is a type of energy called radiation, or electromagnetic energy.		_	absorbs mainly blue and orange light and
	The distance between the crests of two adjacent waves is called a wavelength .		_	participates indirectly in the light reactions.
	The full range of radiation is called the electromagnetic spectrum.	Carotenoids	5	
Figure Figure Figure	7.5 7.5a	_	absorb main	ly blue-green light,
The Pro	ocess of Science: Colors of Light Drive Photosynthesis?		participate in	directly in the light reactions, and
	Observation : In 1883, German biologist Theodor Engelmann saw that certain bacteria tend to cluster in areas with higher	_		dissipate excessive light energy that ge chlorophyll.

oxygen concentrations.

Figure	yellow-orar	acular colors of fall foliage are due partly to the age light reflected from carotenoids.	Figure 7.11 Figure 7.11a Figure 7.11b Figure 7.12	
		Harvest Light Energy		CLE: MAKING SUGAR FROM CARBON DIOXIDE
•	Light behav	ves as photons , a fixed quantity of light energy.	The Calvin	cycle
•	Chlorophyl	I molecules absorb photons.	_	functions like a sugar factory within a chloroplast and
		Electrons in the pigment gain energy.	Figure 7-UN03	regenerates the starting material with each turn.
		As the electrons fall back to their ground state, energy is released as heat or light.	Figure 7.13-1 Figure 7.13-2 Figure 7.13-3	
Figure Figure Figure	7.8a		Figure 7.13-4 Evolution Connect Solar-Driven Evolu	
•	In the thyla	koid membrane, chlorophyll molecules are	C ₃ plants	
_	organized v	with other molecules into photosystems.		use CO ₂ directly from the air and
•		stem is a cluster of a few hundred pigment that function as a light-gathering antenna.	_	are very common and widely distributed.
•	a molecule	on center of the photosystem consists of chlorophyll s that sit next to another molecule called a primary cceptor, which traps the light-excited electron from	C ₄ plants	
	chlorophyll			close their stomata to save water during hot and dry weather and
•		am of molecules built into the thylakoid membrane that trapped energy to make	_	can still carry out photosynthesis.
	_	ATP and	CAM plant	ts
		NADPH.	_	are adapted to very dry climates and
Figure Figure Figure How th	7.9a 7.9b	ctions Generate ATP and NADPH	Figure 7.14 Figure 7.14a Figure 7.14b	open their stomata only at night to conserve water.
•	Two types	of photosystems cooperate in the light reactions:	Figure 7.14c Figure 7-UN04 Figure 7-UN05 Figure 7-UN06	
	•	the water-splitting photosystem and	Figure 7-UN07	
Figure	7.10-1 7.10-2 7.10-3	the NADPH-producing photosystem.		
•	The light re	eactions are located in the thylakoid membrane.		
•	An electror	n transport chain		
	_	connects the two photosystems and		

releases energy that the chloroplast uses to make

ATP.