Chapter 6

Cellular Respiration: Obtaining Energy from Food

make their own organic matter from inorganic

nutrients.

Biology and	d Society:	
Marathone	rs versus	Sprinters

	r i i i i i i i i i i i i i i i i i i i	•
•	Sprinters do not usually compete at short and long distances.	Heterotrophs (other-feeders)
● Figur	Natural differences in the muscles of these athletes favor sprinting or long-distance running. e 6.0	include humans and other animals that cannot make organic molecules from inorganic ones. Producers and Consumers
_		Autotrophs are producers because ecosystems depend upon them for food.
•	The muscles that move our legs contain two main types of muscle fibers:	Heterotrophs are consumers because they eat plants or other
	slow-twitch and	animals. Figure 6.1 Chemical Cycling between Photosynthesis and Cellular Respiration
	fast-twitch.	The ingredients for photosynthesis are carbon dioxide (CO $_2$) and water (H $_2$ O).
•	Slow-twitch fibers	CO ₂ is obtained from the air by a plant's leaves.
	last longer,	H_2O is obtained from the damp soil by a plant's roots.
	do not generate a lot of quick power, and	
	generate ATP using oxygen (aerobically).	Chloroplasts in the cells of leaves use light energy to rearrange the atoms of CO ₂ and H ₂ O, which produces
•	Fast-twitch fibers	sugars (such as glucose),
	contract more quickly and powerfully,	other organic molecules, and
	fatigue more quickly, and	oxygen gas.
	can generate ATP without using oxygen (anaerobically).	Plant and animal cells perform cellular respiration , a chemical process that
• ENEI	All human muscles contain both types of fibers but in different ratios. RGY FLOW AND CHEMICAL CYCLING IN THE BIOSPHERE	primarily occurs in mitochondria,
•	Animals depend on plants to convert the energy of sunlight to	harvests energy stored in organic molecules,
	chemical energy of sugars and	uses oxygen, and
	other organic molecules we consume as food.	generates ATP.
•	Photosynthesis uses light energy from the sun to	The waste products of cellular respiration are
	power a chemical process and	- CO ₂ and H ₂ O,
Produ	make organic molecules.	used in photosynthesis.
•	Plants and other autotrophs (self-feeders)	Animals perform <i>only</i> cellular respiration.

Plants perform	oxidation-reduction reactions or
photosynthesis and	redox reactions for short. Redox Reactions
cellular respiration.	The loss of electrons during a redox reaction is oxidation .
Plants usually make more organic molecules than they need for fuel. This surplus provides material that can be	The acceptance of electrons during a redox reaction is reduction.
used for the plant to grow or	During cellular respiration
stored as starch in potatoes. Figure 6.2	glucose is oxidized and
CELLULAR RESPIRATION: AEROBIC HARVEST OF FOOD ENERGY	oxygen is reduced. Figure 6.UN02
Cellular respiration is	
the main way that chemical energy is harvested from food and converted to ATP and	• Why does electron transfer to oxygen release energy?
an aerobic process—it requires oxygen.	When electrons move from glucose to oxygen, it is as though the electrons were falling.
Octivities are righting and by other are closely related	This "fall" of electrons releases energy during cellular respiration.
Cellular respiration and breathing are closely related.	Figure 6.4
Cellular respiration requires a cell to exchange gases with its surroundings.	Cellular respiration is
Cells take in oxygen gas.	a controlled fall of electrons and
Cells release waste carbon dioxide gas.	a stepwise cascade much like going down a staircase.
Breathing exchanges these same gases between the blood and outside air.	• The scattle that also have a fall of the form of the scattle to the fall of
Figure 6.3 Figure 6.3a Figure 6.3b	The path that electrons take on their way down from glucose to oxygen involves many steps.
The Simplified Equation for Cellular Respiration	The first step is an electron acceptor called NAD ⁺ .
A common fuel molecule for cellular respiration is glucose.	NAD is made by cells from niacin, a B vitamin.
Cellular respiration can produce up to 32 ATP molecules for each glucose molecule consumed.	The transfer of electrons from organic fuel to NAD reduces it to NADH .
The overall equation for what happens to glucose during cellular respiration is	The rest of the path consists of an electron transport chain , which
glucose & oxygen \square CO ₂ , H ₂ O, & a release of	
energy. Figure 6.UN01	involves a series of redox reactions and
Redox Reactions	ultimately leads to the production of large amounts of ATP.
Chemical reactions that transfer electrons from one substance to another are called	Figure 6.5 Figure 6.5a An Overview of Cellular Respiration

•	Cellular respiration is an example of a metabolic pathway, which is a series of chemical reactions in cells.	uses some of this energy to make ATP, and
•	All of the reactions involved in cellular respiration can be grouped into three main stages: 1. glycolysis, 2. the citric acid cycle, and 3. electron transport.	forms NADH and FADH ₂ . Figure 6.10 Figure 6.10a Figure 6.10b
Figure Figure The Th	6.6	 Electron transport releases the energy your cells need to make the most of their ATP.
• Stage 1	With the big-picture view of cellular respiration in mind, let's examine the process in more detail.	The molecules of the electron transport chain are built into the inner membranes of mitochondria.
•	A six-carbon glucose molecule is split in half to form two molecules of pyruvic acid.	The chain
•	These two molecules then donate high energy electrons to	functions as a chemical machine, which
Figure Figure	NAD⁺, forming NADH. 6.7 6.7a	uses energy released by the "fall" of electrons to pump hydrogen ions across the inner mitochondrial membrane, and
Figure Figure Figure	6.7b-2	uses these ions to store potential energy.
• Figure	Glycolysis	• When the hydrogen ions flow back through the membrane, they release energy.
	2: The Citric Acid Cycle	The hydrogen ions flow through ATP synthase .
•	In the citric acid cycle, pyruvic acid from glycolysis is first "groomed."	ATP synthase
	Each pyruvic acid loses a carbon as CO ₂ .	takes the energy from this flow and
	The remaining fuel molecule, with only two carbons left, is acetic acid.	synthesizes ATP. Figure 6.11 Figure 6.11a Figure 6.11b
•	Oxidation of the fuel generates NADH.	Figure 6.11c
•		Cyanide is a deadly poison that
	Finally, each acetic acid is attached to a molecule called coenzyme A to form acetyl CoA.	binds to one of the protein complexes in the electron transport chain,
	The CoA escorts the acetic acid into the first reaction of the citric acid cycle.	prevents the passage of electrons to oxygen, and
Figure Figure	6.9a	stops the production of ATP. The Results of Cellular Respiration
Figure	The citric acid cycle	Cellular respiration can generate up to 32 molecules of ATP per molecule of glucose. Figure 6.12 Figure 6.12a
	extracts the energy of sugar by breaking the acetic acid molecules all the way down to CO ₂ ,	In addition to glucose, cellular respiration can "burn"

_	diverse types of carbohydrates,	could not diffuse away.
	tota and	Figure 6.15
	fats, and	•
Figure 6.12	proteins.	Results: When lactic acid could diffuse away, performance improved greatly.
Figure 6.13 FERMENTATION	ON: ANAEROBIC HARVEST OF FOOD ENERGY	•
Some of oxygen.	your cells can actually work for short periods without	Conclusion : Lactic acid accumulation is the primary cause o failure in muscle tissue.
Ferment food ene	tation is the anaerobic (without oxygen) harvest of ergy.	However, recent evidence suggests that the role of lactic acid in muscle function remains unclear. Fermentation in Microorganisms
	Human Muscle Cells	•
	actioning anaerobically for about 15 seconds, muscle gin to generate ATP by the process of fermentation.	Fermentation alone is able to sustain many types of microorganisms.
•	tation relies on glycolysis to produce ATP.	The lactic acid produced by microbes using fermentation is used to produce
Glycolys	sis	cheese, sour cream, and yogurt,
_	does not require oxygen and	soy sauce, pickles, and olives, and
_	produces two ATP molecules for each glucose broken down to pyruvic acid.	sausage meat products.
		Yeast is a microscopic fungus that
Pyruvic a	acid, produced by glycolysis,	uses a different type of fermentation and
_	is reduced by NADH,	produces CO ₂ and ethyl alcohol instead of lactic
	producing NAD ⁺ , which	acid.
_	keeps glycolysis going.	This type of fermentation, called alcoholic fermentation , is used to produce
Figure 6.14	n muscle cells, lactic acid is a by-product.	beer,
Figure 6.14a Figure 6.14b The Process of S		wine, and
Observa	ation: Muscles produce lactic acid under anaerobic	breads. Figure 6.16 Figure 6.16a Figure 6.16b
•	n: Does the buildup of lactic acid cause muscle	Evolution Connection: Life before and after Oxygen
fatigue? The Process of S What Causes Mo	cience:	Glycolysis could be used by ancient bacteria to make ATP
•	esis: The buildup of lactic acid would cause muscle	when little oxygen was available, and
activity to		before organelles evolved.
Experim acid	nent: Tested frog muscles under conditions when lactic	Today, glycolysis
_	could and	occurs in almost all organisms and

is a metabolic heirloom of the first stage in the breakdown of organic molecules.

Figure 6.17 Figure 6.17a Figure 6.17b Figure 6.UN03 Figure 6.UN05 Figure 6.UN06 Figure 6.UN07 Figure 6.UN08 Figure 6.UN08