Trigonometric Graphs

The graph above can be expressed as a $y=A \sin (B x+C)$ or $y=A \cos (B x+C)$.
The amplitude will be $A=\frac{1}{2}$. The period will be $P=\frac{2}{3}-\left(-\frac{1}{3}\right)=1$.
Since $B=\frac{2 \pi}{P}, B=2 \pi$. Since graph can be seen as a sine shifted $\frac{1}{3}$ to the left, $y=\frac{1}{2} \sin 2 \pi\left(x+\frac{1}{3}\right)=\frac{1}{2} \sin \left(2 \pi x+\frac{2 \pi}{3}\right)$.
To find the shift of the cosine function, first we find the midpoint between the zeros $-\frac{1}{3}$ and $\frac{2}{3}$ by finding the average of the two x-intercepts, or $\frac{-1 / 3+2 / 3}{2}=\frac{1}{6}$. That will be the first positive zero of the function. To find the maximum value of the function, we find the midpoint between the two zeros $-\frac{1}{3}$ and $\frac{1}{6}$, or $\frac{-1 / 3+1 / 6}{2}=\frac{1}{12}$. This will give the other function $y=\frac{1}{2} \cos 2 \pi\left(x+\frac{1}{12}\right)=\frac{1}{2} \cos \left(2 \pi x+\frac{\pi}{6}\right)$.

Exercises:

For each graph determine two functions. One in the form $y=A \sin (B x+C)$ and the other one in the form $y=A \cos (B x+C)$. You can check your answers with your calculator.

Page 2 f 2

