

The graph above can be expressed as a $y = A \sin (B x + C)$ or $y = A \cos (B x + C)$. The amplitude will be $A = \frac{1}{2}$. The period will be $P = \frac{2}{3} - \left(-\frac{1}{3}\right) = 1$.

Since $B = \frac{2\pi}{P}$, $B = 2\pi$. Since graph can be seen as a sine shifted $\frac{1}{3}$ to the left, $y = \frac{1}{2} \sin 2\pi (x + \frac{1}{3}) = \frac{1}{2} \sin (2\pi x + \frac{2\pi}{3})$. To find the shift of the cosine function, first we find the midpoint between the

zeros $-\frac{1}{3}$ and $\frac{2}{3}$ by finding the average of the two *x*-intercepts, or $\frac{-1/3+2/3}{2} = \frac{1}{6}$. That will be the first positive zero of the function. To find the

maximum value of the function, we find the midpoint between the two zeros $-\frac{1}{2}$

and
$$\frac{1}{6}$$
, or $\frac{-1/3 + 1/6}{2} = \frac{1}{12}$. This will give the other function
 $y = \frac{1}{2} \cos 2\pi (x + \frac{1}{12}) = \frac{1}{2} \cos(2\pi x + \frac{\pi}{6})$.

Exercises:

For each graph determine two functions. One in the form $y = A \sin (B x + C)$ and the other one in the form $y = A \cos (B x + C)$. You can check your answers with your calculator.

Page 1 of 2

Page 2 f 2