Trigonometry Test 4 Practice, Chapter 4

- Find the exact value of sin(2x), cos(2x), tan(2x), $sin\frac{x}{2}$, $cos\frac{x}{2}$, $tan\frac{x}{2}$. 1. secx = 5 with $\frac{3\pi}{2} < x < 2\pi$ b) $\cot x = -5$ with x in Quadrant II a)
- 2. Find the exact value of sin, cos and tan for the given angles: a) 105° b) -75° c) 345°

Use the fundamental identities to find the exact values of the remaining 3. trigonometric functions of x.

a)
$$\cos x = \frac{-4}{9}$$
 and $\sin x > 0$ b) $\sec x = \frac{-61}{60}$ and $\tan x > 0$

4. Find the <u>exact</u> values for the sin(x + y), cos(x + y), tan(x + y), sin(x - y), cos(x - y), tan(x - y), and state which quadrant x + y and x - y is in, given the following conditions:

a)
$$sinx = \frac{2}{3}$$
, $cosy = \frac{-1}{4}$, x in quadrant II, and y in quadrant III

b)
$$cosx = \frac{-1}{3}$$
, $tany = \frac{1}{2}$, x in quadrant II, and y in quadrant III
c) $tanx = \frac{3}{4}$, $tany = \frac{-1}{2}$, x in quadrant III, and y in quadrant IV

5. is an identity, verify it. If it is not an identity, find a value of x for which both sides are defined but not equal.

b) $\frac{tanx}{sinx+2tanx} = \frac{1}{cosx-2}$ $\frac{\cos\left(-x\right)}{\sin x \cot\left(-x\right)} = 1$ a)

c)
$$\frac{\cos x}{1-\sin x} + \frac{\cos x}{1+\sin x} = 2 \sec x$$

Verify the following identities. You will have options of identities to verify. 6.

a)
$$\sin^2 x - \sin^2 y = \cos^2 y - \cos^2 x$$
 b) $2\cos^3 x - \cos x = \frac{\cos^2 x - \sin^2 x}{\sec x}$

c)
$$2\cos A - \sec A = \cos A - \frac{\tan A}{\csc A}$$
 d) $\frac{\cos a}{\sec a} + \frac{\sin a}{\csc a} = \sec^2 a - \tan^2 a$

e)
$$\frac{\csc\theta + \cot\theta}{\tan\theta + \sin\theta} = \cot\theta\csc\theta$$

7. Evaluate exactly using an appropriate identity.

 $cos165^{\circ} - cos75^{\circ}$ sin165°sin15° b) a)

ANSWERS:

1. a)
$$\sin(2x) = \frac{-4\sqrt{6}}{25}$$
, $\cos(2x) = \frac{-23}{25}$, $\tan(2x) = \frac{4\sqrt{6}}{23}$, $\sin\frac{x}{2} = \sqrt{\frac{2}{5}}$, $\cos\frac{x}{2} = -\sqrt{\frac{3}{5}}$,
 $\tan\frac{x}{2} = \frac{-\sqrt{6}}{3}$ or $-\sqrt{\frac{2}{3}}$
b) $\sin(2x) = \frac{-5}{13}$, $\cos(2x) = \frac{12}{13}$, $\tan(2x) = \frac{-5}{12}$, $\sin\frac{x}{2} = \sqrt{\frac{5+\sqrt{26}}{2\sqrt{26}}}$, $\cos\frac{x}{2} = \sqrt{\frac{-5+\sqrt{26}}{2\sqrt{26}}}$,
 $\tan\frac{x}{2} = \frac{1}{-5+\sqrt{26}}$
2. a) $\sin\frac{-1+\sqrt{3}}{2\sqrt{2}}$ or $\frac{\sqrt{6}+\sqrt{2}}{4}$, $\cos\frac{-1+\sqrt{3}}{2\sqrt{2}}$ or $\frac{\sqrt{6}-\sqrt{2}}{4}$, $\tan\frac{-1+\sqrt{3}}{1+\sqrt{3}}$
b) $\sin\frac{-\sqrt{3}-1}{2\sqrt{2}}$ or $\frac{-\sqrt{6}-\sqrt{2}}{4}$, $\cos\frac{-1+\sqrt{3}}{2\sqrt{2}}$ or $\frac{\sqrt{4}+\sqrt{6}}{4}$, $\tan\frac{-1+\sqrt{3}}{1+\sqrt{3}}$
c) $\sin\frac{-\sqrt{3}+1}{2\sqrt{2}}$ or $\frac{-\sqrt{6}+\sqrt{2}}{4}$, $\cos\frac{-1+\sqrt{3}}{2\sqrt{2}}$ or $\frac{\sqrt{4}+\sqrt{6}}{4}$, $\tan\frac{-1+\sqrt{3}}{1+\sqrt{3}}$
3. a) $\sin x = \frac{\sqrt{65}}{9}$, $\tan x = \frac{-\sqrt{65}}{61}$, $\tan x = \frac{1}{60}$, $\csc x = \frac{9}{45}$ or $\frac{9\sqrt{65}}{55}$, $\sec x = \frac{9}{4}$, $\cot x = \frac{-4}{\sqrt{65}}$ or $\frac{-4\sqrt{65}}{65}$
b) $\sin x = \frac{-11}{61}$, $\cos x = \frac{-60}{61}$, $\tan x = \frac{1}{60}$, $\csc x = -\frac{11}{61}$, $\cot x = \frac{10}{10}$
4. a) $\sin(x + y) = \frac{-2+5\sqrt{3}}{12}$, $\cos(x + y) = \frac{\sqrt{5}-2\sqrt{15}}{12}$, $\tan(x + y) = \frac{-2+5\sqrt{3}}{\sqrt{5}+2\sqrt{15}}$ or $\frac{32\sqrt{5}-9\sqrt{15}}{55}$, $(x + y)$ in qual II
 $\sin(x - y) = \frac{-2-5\sqrt{3}}{\sqrt{5}-2\sqrt{15}}$ or $\frac{-4\sqrt{10}+\sqrt{5}}{15}$, $\cos(x + y) = \frac{2+2\sqrt{2}}{3\sqrt{5}}$ or $\frac{2\sqrt{5}+2\sqrt{10}}{15}$, $\tan(x + y) = \frac{-4\sqrt{2}+1}{3\sqrt{5}}$ or $\frac{-4\sqrt{10}+\sqrt{5}}{15}$, $\cos(x + y) = \frac{2\sqrt{5}-2\sqrt{15}}{2}$, $(x + y)$ in qual III
b) $\sin(x + y) = \frac{-4\sqrt{2}+1}{3\sqrt{5}}$ or $\frac{-4\sqrt{10}+\sqrt{5}}{15}$, $\cos(x + y) = \frac{2+2\sqrt{2}}{2}$ or $\frac{2\sqrt{5}+2\sqrt{10}}{15}$, $\tan(x + y) = \frac{-4\sqrt{2}-1}{2}$ or $\frac{5\sqrt{2}-9}{2}$, $(x + y)$ in qual IV
 $\sin(x - y) = \frac{-4\sqrt{2}-1}{15}$ or $\frac{5\sqrt{2}-9}{2}$, $(x - y)$ in qual III
c) $\sin(x + y) = \frac{-4\sqrt{2}-1}{25}$ or $\frac{5\sqrt{2}+9}{2}$, $(\cos(x - y) = \frac{-1}{5\sqrt{5}}$ or $\frac{-11\sqrt{5}}{25}$, $\tan(x - y) = \frac{2}{11}$, $(x + y)$ in qual III
 $\sin(x - y) = \frac{-2}{\sqrt{5}}$ or $\frac{-2\sqrt{5}}{25}$, $\cos(x - y) = \frac{-1}{\sqrt{5}}$ or $\frac{-\sqrt{5}}{5}$, $\tan(x - y) = \frac{2}{11}$, $(x + y)$ in qual III
 $\sin(x - y) = \frac{-2}{\sqrt{5}}$ or $\frac{-2\sqrt{5}}{25}$, $\cos(x - y) = \frac{-1}{\sqrt{5}}$ or $\frac{-\sqrt{5}}{5}$, $\tan(x - y) = 2$, $(x - y)$ in qual III
 $\sin(x - y) = \frac{-2}{\sqrt{5}}$ or $\frac{-2\sqrt{5}}{25}$,

5. a) Not an Identity, x = π/4, answers may vary.
b) Not an Identity, x = π/4, answers may vary.
c) Identity

7. a)
$$\frac{-\sqrt{3}}{4} + \frac{1}{2} \text{ or } \frac{1}{2} - \frac{\sqrt{3}}{4}$$
 b) $\frac{-\sqrt{3}}{\sqrt{2}} \text{ or } \frac{-\sqrt{6}}{2}$