# 4.4 Solving Quadratic Equations by Square Root Property 

Steps:

1. Isolate the squared variable expression
2. Use the square root property to undo the square. Use $\pm$ on the side opposite the variable. If the radicand is negative, then the equation has no real solutions.
3. Rewrite as two equations and solve.

## Solve the following:

$\begin{array}{ll}\text { a. } 3=5(x+3)^{2}-17 & \text { b. }-3 x^{2}+12=-15\end{array}$
c. $(p-5)^{2}+20=4$

### 4.5 Solving Equations by Factoring

Steps:

1. Set the polynomial equal to zero
2. Factor the polynomial completely
3. Set each factor equal to zero and solve
4. Check your answers

Solve the following by factoring:
a. $x^{2}+3 x-50=38$

Solve the following by factoring.

$$
\text { b. } \quad 3 x^{2}-5 x=28
$$

c. $10 x^{3}+66 x^{2}-28 x=0$

### 4.6 Solving Quadratic Equations by Quadratic Formula

Steps:

1. Set the standard form of a quadratic equation equal to zero $\left(a x^{2}+b x+c=0\right)$
2. Substitute the values for $a, b$, and $c$ into the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
3. Simplify the quadratic formula.
4. Check answers in the original equation.

Solve the following quadratic equations. Round your answers to three decimal places.
a. $4 x^{2}+3 x-10=0$
b. $-2 h^{2}-7 h=-9$

Solve the following quadratic equations. Round your answers to three decimal places.

$$
\text { c. } 2.6 x^{2}-3.8 x-4.2=0
$$

Solve the following equations using any method.

$$
\begin{array}{ll}
\text { a. } 4 x^{3}+5 x^{2}-6 x=0 & \text { b. } 6 p^{2}+15=21
\end{array}
$$

Solve the following equations using any method.
c. $k^{2}+6 k=-5$
d. $1.3 x^{2}+4.1 x-7.2=0$

### 4.7 Revisited

We can now find all the components necessary to make a thorough graph of a parabola:

- Determine which way the parabola faces (a value)
- The vertex
$>(\mathrm{h}, \mathrm{k})$ from vertex form
$>$ vertex formula $x=\frac{-b}{2 a}$, solve for $y$ from standard form
- The axis of symmetry
- The $y$-intercept ( $x=0$, solve for $y$ )
- The $x$-intercepts (set $y=0$ and solve for $x$ )
$>$ Calculate the ZEROs using the graphing calculator
$>$ Use the square root property if you can isolate the squared variable expression
$>$ Factor the polynomial if possible and set each factor equal to zero
$>$ Use the quadratic formula if the equation is written in standard form

A parabola can have two. one. or no x-intercepts


Sketch the graph of the following:

$$
\text { a. } f(x)=-x^{2}+4 x+5
$$



Sketch the graph of the following:
b. $f(x)=1.5 x^{2}-9 x+7.5$


Sketch the graph of the following:
c. $f(x)=-0.25 x^{2}-3 x-15$


