4.1 Quadratic Functions and Parabolas

Quadratic function can be written in the standard form or the vertex form

Standard form $f(x)=a x^{2}+b x+c$ where a, b, c are real numbers and $a \neq 0$

Vertex form $f(x)=a(x-h)^{2}+k$ where a, h, k are real numbers and $a \neq 0$

4.1 Continued

Identifying a Quadratic Function
Is the function linear, quadratic or other?

1. $\mathrm{V}(\mathrm{t})=2 \mathrm{t}$
2. $f(t)=3.5 t-7$
3. $r(t)=5 t^{2}$
4. $p(u)=4 u^{2}+5 u$
5. $E(w)=(w+4)^{2}$
6. $P(n)=2 n^{3}-5 n^{2}+n-10$

Use the graph of $f(x)$ to estimate the following:
a. For what x values is this curve increasing?
Decreasing? Write your answer using inequalities.
b. Vertex
c. x-intercept(s)
d. y-intercept

$$
\text { e. } f(3)=\text { ? }
$$

f. What x value(s) will make $f(x)=-10$

4.2 Graphing Quadratic Equations

in Vertex Form: $f(x)=a(x-h)^{2}+k$

- The vertex of the parabola is (h, k)
- The value of "a" will determine whether the parabola faces upward or downward, and how wide or narrow the graph is.

$a>0$	faces UP	$0<a<1$
$a<0$	faces DOWN	$a>1$

- The value of h will determine how far the vertex moves to the left or right.
$h>0$ (positive but will appear negative) shifts \qquad $\mathrm{h}<0$ (negative but will appear positive) shifts \qquad

4.2 continuted

In vertex form: $f(\mathrm{x})=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$

- The value of k will determine how far the vertex moves up or down.
$k>0$ shifts \qquad
$\mathrm{k}<0$ shifts \qquad
- The axis of symmetry is the vertical line through the vertex and has the equation $x=h$

Describe how the graphs of the following parabolas have changed from the graph of the standard parabola $y=x^{2}$.

$$
\text { a. } y=\frac{2}{3}(x-5)^{2}-1 \quad \text { b. } y=-4(x+7)^{2}+6
$$

Steps to graphing a Quadratic Equation from Vertex Form: $f(\mathrm{x})=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}$

1. Determine whether the graph opens up or down.
2. Find the vertex and the equation of the axis of symmetry.
3. Find the y-intercept. You can solve for the y intercept using $\mathrm{x}=0$: $\mathrm{y}=\mathrm{a}(0-\mathrm{h})^{2}+\mathrm{k}$
4. Find another point by choosing a value for x and calculating y. Use symmetry to plot other points.
5. Connect the points with a smooth curve.

Sketch the graph of $f(x)=1.5(x-4)^{2}+3$

4.2 continued

- Domain of a quadratic model will be restricted only by the context of the problem.
- Range of a quadratic model is the output values that come from the domain.
- The domain for a quadratic function with no context will be all real numbers.
- The range for a quadratic function with no context will be either

$$
\begin{aligned}
& (-\infty, k] \text { if } a<0 \text { (opens down) } \\
& \text { or }[k, \infty) \text { if a }>0 \text { (opens up) }
\end{aligned}
$$

Sketch the graph of $f(x)=-0.1(x+3)^{2}+5$

Determine the
Domain:

Range:

4.7 Graphing Quadratic Equations in Standard Form: $f(x)=a x^{2}+b x+c$

- The vertex of the parabola (x, y) can be found by using the formula: $x=\frac{-b}{2 a}$ and then substituting this x -value into the equation to find y.
- Just like the vertex form, the value of "a" will determine whether the parabola faces upward or downward, and how wide or narrow the graph is.

$a>0$	faces UP	$0<a<1$	wider
$a<0$	faces DOWN	$a>1$	narrower

Steps to graphing a Quadratic Equation from Standard Form: $f(x)=a x^{2}+b x+c$ 1. Determine whether the graph opens up or down. (Look at the value of ' a ')
2. Find the vertex (x, y) using $x=\frac{-b}{2 a}$ and the equation to calculate the y value.
3. Find the y-intercept $f(0):(0, c)$
4. Find the x-intercepts (if any). Set $y=0$ and solve for x. Use your calculator to find the ZERO(s) or see next week's methods.
5. Use symmetry to plot other points.
6. Connect the points with a smooth curve.

Find the vertex and vertical intercept of the following quadratic equations. State if the vertex is a minimum or maximum point on the graph.

$$
\begin{array}{ll}
\text { a. } \quad f(x)=x^{2}+10 x-12 & \text { b. } g(a)=-5 a^{2}-30 a-15
\end{array}
$$

A baseball is hit so that its height in feet t seconds after it

 is hit can be modeled by: $h(t)=-16 t^{2}+40 t+4$a. What is the height of the ball when it is hit?
b. When does the ball reach a height of 20 ft ?
c. When does the ball reach its maximum height?

A baseball is hit so that its height in feet t seconds after it

 is hit can be modeled by: $h(t)=-16 t^{2}+40 t+4$d. What is the ball's maximum height?
e. If the ball does not get caught, when does it hit the ground?

