3.1 Rules of Exponents

Product rule

Quotient rule

Power rule

Products or quotients raised to exponents

Negative exponents

Zero as an exponent

Simplify the following expressions.
a. $h^{4} h^{7} h^{3}$
b. $\left(5 a^{4} b^{3}\right)\left(6 a^{2} b^{8}\right)$

Simplify the following expressions.
a. $\frac{m^{4} n^{8}}{m^{3} n^{2}}$
b. $\frac{24 x^{6} y^{5}}{9 x y^{3}}$

Simplify the following expressions.

$$
\text { a. }\left(x^{3} y^{2} z^{5}\right)^{4}
$$

$$
\text { b. }\left(\frac{3 a^{4} b^{6}}{5 c^{2}}\right)^{3}
$$

Simplify the following expressions.
a. $\left(2 m^{4} n^{7}\right)^{3}\left(5 m n^{3}\right)^{2}$
b. $\left(\frac{6 x^{2} z^{5}}{x y^{3} z^{2}}\right)^{2}\left(\frac{2 x y^{3}}{x z}\right)^{3}$

Simplify the following expressions. Write all answers without negative exponents.
a. $a^{2} b^{-3}$
b.

$$
\frac{-40 x^{2} y^{-3} z^{-5}}{6 x^{-4} y^{4} z^{-2}}
$$

Simplify the following expressions. Write all answers without negative exponents.
a. $\left(285 x^{43} y^{-8} z\right)^{0}$

$$
\text { c. }\left(\frac{-30 j^{2} k^{-2}}{-12 j^{-5} k^{4}}\right)^{-3}
$$

b. $\left(5 g^{2} h^{-4}\right)^{-2}\left(3 g^{-1} h\right)^{2}$

3.2 Combining Functions

Term - A constant, a variable, or the product of any number of constants and variables. They can include exponents.

Coefficient - The constant part of any term. It is usually at the front of any term and includes the sign of the term.

Polynomial - A term or any combination of terms that are added together. The exponents must all be whole numbers.

Determine the number of terms and identify the coefficients of each term.
a. $5 x^{2}-10 x-20$
b. $-4 a^{3} b^{5}+200$

Determine if the given expression is a polynomial. If the expression is not a polynomial explain why not.
a. $8 \sqrt{a}+7 a-4$
b. $8 m^{2} n^{5}-9 m n^{4}$
c. $5 g+\frac{2}{h}-7$

For the given expressions, list the degree of each term and of the entire polynomial.
a. $5 t^{2}+6 t-8$
b. $5 a^{4} b^{3}+7 a^{2} b^{2}-8 b^{5}$

Combine the following functions using:

$$
f(x)=3 x+8 \quad g(x)=4 x-10
$$

a. $f(x)+g(x)$
b. $f(x)-g(x)$

Perform the indicated operations and simplify.
a. $\left(8 x^{3}+7 x^{2}-6 x\right)-\left(3 x^{2}+4 x-7\right)$
b. $(3 a+7)(4 a-5)$

The revenue and cost for Build It Right Construction to build homes in a new development can be modeled by the following functions.

$$
R(h)=-0.007 h^{2}+0.37 h-1.04
$$

$$
C(h)=-0.005 h^{2}+0.23 h-0.68
$$

where $R(h)$ is the revenue in millions of dollars from selling h homes and $C(h)$ is the cost in millions of dollars to build h homes.
a. Find the revenue and cost for Build It Right Construction to build 12 homes in this new development.
b. Find a new function that will give the profit in millions of dollars for Build It Right Construction when they build h houses in this new development.

$$
\begin{aligned}
& R(h)=-0.007 h^{2}+0.37 h-1.04 \\
& C(h)=-0.005 h^{2}+0.23 h-0.68
\end{aligned}
$$

$$
P(h)=-0.002 h^{2}+0.14 h-0.36
$$

c. Use the new profit function to find the profit for 25 houses.

3.4 Factoring Polynomials

Greatest common factor (GCF)

- Look for the largest number that divides into the coefficients
- If there are common variables, choose the smaller exponent term to factor out

Factor out the greatest common factor:
a. $6 a^{2}+10 a$
b. $8 x^{3} y^{2}-7 x^{2} y$
c. $3 y(y+4)-5(y+4)$

Factor by Grouping

1. Use when polynomial is 4 terms
2. Take out the GCF
3. Group the first two terms and last two terms
4. Factor out the GCF from $1^{\text {st }}$ group
5. Factor out the GCF from $2^{\text {nd }}$ group
6. Factor out the GCF from the remaining expression

Factor by grouping:
$\begin{array}{ll}\text { a. } 6 p^{2}-10 p+15 p-25 & \text { b. } 8 m^{2}+12 m n-10 m-15 n\end{array}$

Factoring Trinomials ($\mathrm{a}=1$)

Factoring Trinomials of the form $a x^{2}+b x+c$ where $a=1$
Find a pair of numbers that multiply to c and add to b call them p and q , the factored form is $(\mathrm{x}+\mathrm{p})(\mathrm{x}+\mathrm{q})$

Factor the following.
a. $x^{2}+9 x+14$
c. $x^{2}+7 x-18$
b. $x^{2}-5 x-24$
d. $3 x^{2}-9 x-162$

Factoring Trinomials $(a \neq 1)$

Factoring Trinomials of the form $a x^{2}+b x+c$ where $\mathrm{a} \neq 1$ can use AC Method, Trial and Error, X method, Fake factoring, box method, etc.

AC Method - watch the media Take out GCF. Multiply the a and c coefficients. Find a pair of numbers that multiply to " $a c$ " and add to b. Use these numbers to split up the middle term and factor by grouping.

Factor $6 x^{2}+7 x+2$

Trial and Error Method - Take out the GCF. Use the first

 and last term to create potential factors and FOIL to check that the combination also produces the correct middle term.a. Factor completely: $15 x^{2}+23 x-28$
b. Factor completely: $4 x^{2}-7 x+3$

Factor the following. Use any method. Don't forget to take out GCF first!

$$
\text { a. } 12 x^{3}-87 x^{2}+21 x
$$

b. $2 x^{2} y-11 x y-40 y$

Factor the following completely using any method.
a. $x^{2}+4 x-21$
b. $12 x^{2}-43 x+35$

3.5 Special Factoring Techniques

Difference of Squares - a binomial with ends that are perfect squares and a minus sign between

Factor the following.
a. $x^{2}-64$
b. $25 a^{2}-4 b^{2}$

Difference and Sum of Cubes - a binomial with ends that are perfect cubes. They can be factored using the following format:

$$
\begin{gathered}
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
\quad \text { OR }
\end{gathered}
$$

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Factor the following:

$$
\text { a. } y^{3}+64
$$

b. $27 m^{3}-8 n^{3}$

