I. Solve the following quadratic equations.

1. $x^{2}-4 x-32=0$
2. $2 x^{2}+11 x-40=0$
3. $x^{2}+5 x-150=0$

Solve using the quadratic formula.
5. $2 x(x-3)=-3$
6. $3 x^{2}+6 x=-2$
7. $x^{2}-4 x+5=0$
8. $x(2 x-3)=1$
9. $-2 x(x+1)=3$
III. Simplify the expressions. Write the result using positive exponents. Perform any possible numerical calculations.
10. $x^{3} \cdot y^{-4} \cdot y^{10}$
11. $\left(\frac{4 x^{3}}{6 x y^{-2}}\right)^{-2}$
12. $\frac{x^{5} y^{-7}}{x^{2} y^{4}}$
IV. Formulas.
13. The median price of a single-family home from 1980 to 1990 can be approximated by $P(x)=3421 x+61,000$, where $x=0$ corresponds to 1980 and $x=10$ corresponds to 1990. Find the median price of a single-family home in 1985.
V. Evaluate.
14. Find the slope of the line passing through the points $\left(-2, \frac{1}{3}\right)$ and $(-1,2)$.
15. Find the slope-intercept form of a line parallel to $y=2+3 x$, passing through the point $\left(\frac{1}{3}, 8\right)$.
16. Find the slope-intercept form of a line perpendicular to $y=\frac{2}{3} x+1$, passing through $(-2,3)$.
VI. Sketch the following graphs.

Shade the solution set in the $x y$-plane. Use a test point to help check your graph.
17. $x-2 y>5$
18. $x-2 y>4$

Show any vertical asymptotes as dashed lines:
19. $f(x)=\frac{3.2}{x^{2}-1}$
VII. Solve for x . Write your answers in interval notation.
20. $2 x-4<2$ and $2 x \geq x+2$ 21. $2 x-3 \leq 2$ or $3 x<x+4$
VIII. Solve the problem.
22. The area A of a rectangle is $5 x^{2}+13 x-6$ and its width W is $x+3$. Find the length L of the rectangle.
IX. Simplify the following expressions by performing the indicated operations. Write all answers in simplified standard form. Write all fractions in lowest terms.
23. $(4 y+3)\left(y^{2}+2 y+3\right)$
24. $\frac{x^{2}+4}{x^{2}-4} \cdot \frac{x+2}{x-2}$
25. $\frac{2 x-6}{6 x^{2}-15 x} \div \frac{4 x-12}{18 x^{2}-45 x}$
26. $4 \sqrt[3]{16}-5 \sqrt[3]{2}$
27. $\sqrt{5}+3 \sqrt{2}-7 \sqrt{5}$
28. $\frac{3+4 i}{2 i}$
29. $\frac{2+3 i}{4-2 i}$
X. Solve the following equations.
30. $2 x^{2}+2=5 x$
31. $\frac{x+1}{5}=\frac{x}{3}$

XI. Quadratic Applications.

32. Suppose that a cannon is launched upward with an initial velocity of 128 feet per second and is released 4 feet above the ground. Its height h in feet after t seconds is modeled by $h(t)=-16 t^{2}+128 \mathrm{t}+4$. When does the cannon reach its maximum height? What is this maximum height?
33. On wet pavement a safe braking distance d in feet for a car traveling x miles per hour is $d=\frac{s^{2}}{9}$. What speed corresponds to a stopping distance of 121 feet?

ANSWERS:

1. $x=-4, x=8$
2. $x=-8, x=\frac{5}{2}$
3. $x=-15, x=10$
4. $x=\frac{ \pm 9}{5}$
5. $x=\frac{3 \pm \sqrt{3}}{2}$
6. $x=\frac{-3 \pm \sqrt{3}}{3}$
7. $x=2 \pm i$
8. $x=\frac{3 \pm \sqrt{17}}{4}$
9. $x=\frac{-1 \pm i \sqrt{5}}{2}$
10. $x^{3} y^{6}$
11. $\frac{9}{4 x^{4} y^{4}}$
12. $\frac{x^{3}}{y^{11}}$
13. $\$ 78,105$
14. $m=\frac{5}{3}$
15. $y=3 x+7$
16. $y=\frac{-3}{2} x$
17. $[2,3)$
18. $\left(-\infty, \frac{5}{2}\right]$
19. $5 x-2$
20. $4 y^{3}+11 y^{2}+18 y+9$
21. $\frac{x^{2}+4}{(x-2)^{2}}$
22. $\frac{3}{2}$
23. $\quad 3 \sqrt[3]{2}$
24. $3 \sqrt{2}-6 \sqrt{5}$
25. $\frac{-4+3 i}{-2}$
26. $\frac{1+8 i}{10}$
27. $x=\frac{1}{2}, x=2$
28. $x=\frac{3}{2}$
29. $t=4 \mathrm{sec}, h=260 \mathrm{ft}$
30. $s=33 m p h$
