TR 10am

Solving Quadratic Equations by Factoring

Names of Group Members:

Zero-Product Property: If ab = 0, then either a = 0 or b = 0, or both. (When two or more numbers are multiplied together and the result is zero, then one of them must equal zero.

Steps to Solve:

- 1. The equation must be in standard form $(ax^2 + bx + c = 0)$ and equal to zero. If it is not equal to zero, then you cannot use the zero-product property.
- 2. Factor the trinomial into 2 binomials.
- 3. Set each binomial equal to zero and solve for the variable.
- 4. You can verify these solutions in the original equation.

Examples:

1.
$$x^{2} + 3x - 10 = 0$$
 $x + 5 = 0$ $x - 2 = 0$ $x - 2 = 0$ $x - 5$ $x = 2$ $x - 3$ $x - 2$ $x = 3$ $x - 2$ $x = 3$ $x - 3$

4. The height above ground of a ball thrown at 64 feet per second from the top of an 80-foot-high building is modeled by $S = 80 + 64t - 16t^2$ feet, where t is the number of seconds after the ball is thrown. How long will the ball be in the air?

$$-1/6(t^2+1.64t+80=0)$$

 $-1/6(t^2-4t-5)=0$ The ball will
 $-1/6(t-5)(t-1)$ be in the air
 $-1/6(t-5)(t-1)$ for 5 seconds.
 $t-5=0$ $t+1=0$ for 5 seconds.

Solving Quadratic Equations by Graphical & Numerical Methods

Names of Group Members:

Graphical: where the graph intercepts the x-axis is the solution(s) to the quadratic equation.

Steps to Solve:

- 1. The equation must be in standard form $(ax^2 + bx + c = y)$.
- 2. Set y_1 = the equation, then graph.
- 3. Use 2nd Trace option 2:zero, identify left bound, right bound, and guess for calculator to identify zero.
- 4. You can verify these solutions in the original equation.

Examples:

1.
$$2x^2 + x - 6 = 0$$

 $X = 1.5$ and $X = -2$

2.
$$6x^2 + 5x - 6 = 0$$

3.
$$10x^{2} = 22x - 4$$

$$10x^{2} - 20x + 4$$

$$X = 2000 \quad X = 2$$

4.
$$x^2 + 4x = -8$$

 $x^2 + 4x + 8 = 0$
NO Solution

Solving Quadratic Equations by Graphical & Numerical Methods

Names of Group Members:

Numerical: in a table when the $y_1 = 0$, the corresponding x-value(s) are the solution(s).

Steps to Solve:

- 1. The equation must be in standard form $(ax^2 + bx + c = y)$.
- 2. Set y_1 = the equation, then use 2^{nd} Graph to create a table. Adjust the table setup as needed using 2^{nd} Window.
- 3. Locate the $y_1 = 0$, then select the corresponding x-values.
- 4. You can verify these solutions in the original equation.

Examples:

3. $2x^2 + 7x = 4$

1.
$$x^2 - 7x + 10 = 0$$

 $X = 2$ and $X = 5$

2.
$$x^2 - 9x + 18 = 0$$

 $X = 3$ and $X = 6$

$$X = .5$$
 and $X = -4$

Solving Quadratic Equations by Square Root Method

Names of Group Members:

Square Root Property: If $x^2 = a$, then $x = \sqrt{a}$ or $x = -\sqrt{a}$, so the solutions of the quadratic equation of the form $x^2 = a$ are given by $x = \pm \sqrt{a}$.

Steps to Solve:

- 1. The equation must not have a bx term.
- 2. Isolate the squared term.
- 3. Apply the square root property, by taking the square root of both sides.
- 4. If there is a variable expression, then solve for the variable.
- 5. You can verify these solutions in the original equation.

Examples:

1.
$$x^2 = 20$$
 $x = 20$ $x = 20$ $x = 20$

2.
$$5x^2 - 25 = 0$$

$$5x^{2} = 25 = 5 = 5 \times 2 = 25 \times 2 = 25$$

4.
$$(2x+1)^2 + 7 = 0$$

$$-7 - 7$$

$$(2x+1)^2 = -7 / (2x+1)^2 = \pm i\sqrt{7} / (2$$

Solving Quadratic Equations by Completing the Square

Names of Group Members:

Completing the Square: when you can't factor the trinomial then your split up the trinomial and can use a version of the square root method.

Steps to Solve:

- 1. The equation must have the variables on one side of the equal sign and the constant on the other side $(x^2 + bx = d)$.
- 2. First you must determine what the "c" value should be in order to create a perfect square trinomial: $c=\left(\frac{b}{2}\right)^2$.
- 3. Then add $\left(\frac{b}{2}\right)^2$ to both sides.
- 4. Rewrite the perfect square trinomial in the form of a binomial squared $\left(x + \frac{b}{2}\right)^2$ and simplify the constants on the right hand side.
- 5. Now use the square root method to solve for x.
- 6. You can verify these solutions in the original equation.

Examples:

1.
$$x^{2} + 4x - 9 = 0$$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 + 9$
 $+9 +$

Solving Quadratic Equations by Quadratic Formula

Names of Group Members:

Quadratic Formula: solutions of the quadratic equation of the form $ax^2 + bc + c = 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Steps to Solve:

- 1. The equation must be in standard form $(ax^2 + bx + c = 0)$.
- 2. Replace each letter with its appropriate coefficients from the quadratic equation.
- 3. Simplify the formula.

