College Algebra Spring 2013
Chapters 5 and 7 Practice Test
I. Find the inverse of the function.

1. $f(x)=\frac{x}{7}-3$
2. $f(x)=7 x^{3}-6$
II. Find the requested composition of functions.
3. Given $f(x)=4 x^{2}+2 x+5$ and $g(x)=2 x-3$,
a) Find $(g \circ f)(x)$
b) Find $(f \circ g)(x)$
III. For the pair of functions, perform the indicated operations. Also evaluate each function at $x=-2$.
4. $\quad f(x)=5 x^{2}-8 x$ and $g(x)=x^{2}-3 x-40$
a) Find $(g+f)(x)$
b) Find $(g-f)(x)$
c) Find $(f-g)(x)$
d) Find $(f g)(x)$
e) Find $\left(\frac{f}{g}\right)(x)$ and its domain.
f) Find $\left(\frac{g}{f}\right)(x)$ and its domain.
IV. Use the equation of the polynomial function to
a) State the degree
b) State the leading coefficient
c) Find the y-intercept(s) of $f(x)$.
d) Describe the end behavior of the graph of the function
5. $\quad f(x)=-20 x^{3}+6 x-7$
6. $f(x)=12 x^{4}-3 x^{3}+9$
7. $f(x)=-8(x+2)\left(x^{5}-2\right)$
V. Use the graph of the function to find the local maximum and local minimum, round to the nearest hundredth.
8. $y=x^{3}-x^{2}-3 x+2$
9. $y=3 x^{3}-4 x^{2}-6 x+2$
VI. Solve the polynomial equation.
10. $(2 x-7)(x+5)(x-5)=0$
11. $x^{3}-5 x^{2}+6 x=0$
12. $4 x^{3}-24 x^{2}-x+6=0$
13. $x^{4}-6 x^{2}+8=0$
14. $\frac{1}{7} x^{3}+49=0$
VII. Find a) the domain b) any removable discontinuities (holes) c) horizontal asymptotes d) vertical asymptotes e) sketch a graph of the function.
15. $f(x)=\frac{x^{2}+x-9}{x^{2}-9}$
16. $f(x)=\frac{x^{2}-4}{x-2}$
17. $f(x)=\frac{x-3}{x+4}$

College Algebra Spring 2013
Chapters 5 and 7 Practice Test
VIII. Use the given graph of the polynomial function to
a) Estimate the x -intercept(s)
b) State whether the leading coefficient is positive or negative
c) Determine whether the polynomial function is cubic or quartic
18.

19.

IX. Given the graphs below, answer the following. Assume that the leading coefficient is 1 or - 1 .
a) State the number of turning points.
b) State the zeros.
c) State whether the leading coefficient is 1 or -1 .
d) Write the equation in factored form.
20.

21.

X. Solve the problem.
22. The supply function for a product is $p(x)=\frac{1}{3} x^{2}+30, x \geq 0$, where x is the number of thousands of units a manufacturer will supply if the price is $\mathrm{p}(\mathrm{x})$ dollars.
a) Find the inverse of this function.
b) For this problem, what does the inverse compute?
c) Using the inverse function, how many units are supplied if the price is $\$ 462$?
23. A rectangular piece of cardboard measuring 17 inches by 43 inches is to be made into a box with an open top by cutting equal size squares from each corner and folding up the sides. Let x represent the length of a side of each such square. For what value of x will the volume be a maximum? If necessary, round to 2 decimal places.

Chapters 5 and 7 Practice Test

24. Suppose a cost-benefit model is given by $y=\frac{3.4 x}{100-x}$, where y is the cost in thousands of dollars for removing x percent of a given pollutant. Find the cost of removing 75% to the nearest dollar.
25. You are interested in a 40 -inch TV at Best Buy. The TV is being sold with a rebate of $\$ 75$ and a 25% discount. Which is the better deal: take the rebate first followed by the discount, or take the discount first followed by the rebate?
a) Write the function, $R(x)$, for the price of the TV with the rebate.
b) Write the function, $D(x)$, for the price of the TV with the discount.
c) Find $(R \circ D)(x)$.
d) Find and interpret $(R \circ D)(825)$.
e) Find $(D \circ R)(x)$.
f) Find and interpret $(D \circ R)(825)$.
g) Which is the least expensive option for purchasing the TV?

Answers:

1. $f^{-1}(x)=7 x+21$
2. $f^{-1}(x)=\sqrt[3]{\frac{x+6}{7}}$
3. a) $(g \circ f)(x)=8 x^{2}+4 x+7 \quad$ b) $(f \circ g)(x)=16 x^{2}-44 x+35$
4. a) $(g+f)(x)=6 x^{2}-11 x-40 \quad(g+f)(-2)=6$
b) $(g-f)(x)=-4 x^{2}+5 x-40 \quad(g-f)(-2)=-66$
c) $(f-g)(x)=4 x^{2}-5 x+40 \quad(f-g)(-2)=66$
d) $(f g)(x)=5 x^{4}-23 x^{3}-176 x^{2}+320 x \quad(f g)(-2)=-1080$
e) $\left(\frac{f}{g}\right)(x)=\frac{5 x^{2}-8 x}{x^{2}-3 x-40}$, domain: $x \in \mathbb{R}, x \neq-5,8 \quad\left(\frac{f}{g}\right)(-2)=-1.2$
f) $\left(\frac{g}{f}\right)(x)=\frac{x^{2}-3 x-40}{5 x^{2}-8 x}$, domain: $x \in \mathbb{R}, x \neq 0, \frac{8}{5}$
$\left(\frac{g}{f}\right)(-2)=-0.833$
5. a) 3
b) -20
c) $f(0)=-7$
d) Left end rises and right end falls
6. a) 4
b) 12
c) $f(0)=9$
d) Both ends rise
7. a) 6
b) -8
c) $f(0)=32$
d) Both ends fall
8. Local Max $=(-0.72,3.27)$, Local Min $=(1.39,-1.42)$
9. Local Max $=(-0.49,3.63)$, Local Min $=(1.37,-6.01)$
10. $x=\frac{7}{2},-5,5$
11. $x=0,2,3$
12. $x=\frac{1}{2}, \frac{-1}{2}, 6$
13. $x= \pm 2, \pm \sqrt{2}$
14. $x=-7$
15. a) $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
b) None
c) $y=1$
d) $x= \pm 3$
e) use calculator to check graph
16. a) $(-\infty, 2) \cup(2, \infty) \quad$ b) hole at $(2,4) \quad$ c) none \quad d) none
e) use calculator to check graph, hole at $x=2$
17. a) $(-\infty,-4) \cup(-4, \infty)$
b) None
c) $y=1$
d) $x=-4$
e) use calculator to check graph
18. a) $(-2,0),(1,0),(3,0)$
b) positive
c) cubic
19. a) $(-3,0),(-1,0),(0,0),(2,0) \quad$ b) negative c) quartic
20. a) 2
b) $x=-6,-2,4$
c) 1
d) $(x+6)(x+2)(x-4)$
21. a) 5
b) $x=-3,0,2$
c) 1
d) $(x+3)^{2}(x)^{2}(x-2)^{2}$
22. a) $f^{-1}(x)=\sqrt{3 x-90} \quad$ b) Given the price in dollars, f^{-1} computes the number of units (in thousands) c) For the price of $\$ 462$, we will have 36 thousand units.
23. 3.75 in
24. \$10,200
25. a) $R(x)=x-75$ b) $D(x)=0.75 x \quad$ c) $(R \circ D)(x)=0.75 x-75$
d) $(R \circ D)(825)=\$ 543.75 \quad$ e) $(D \circ R)(x)=0.75 x-56.25$
f) $(D \circ R)(825)=\$ 562.50 \quad$ g) $(R \circ D)(x)$ The cost of the TV with the discount taken before the rebate is the least expensive option.
