CHM 1046 General Chemistry II Topics
Text: General Chemistry, $9^{\text {th }}$ Edition Covering CH 11-19 with CH 23

| Topic | CHM 1046 | $\begin{aligned} & \hline \mathrm{M}=\text { mandatory } \\ & \mathrm{O}=\text { optional } \\ & \mathrm{V}=\text { overview } \\ & \mathrm{R}=\text { review } \end{aligned}$ |
| :---: | :---: | :---: |
| Rates of Reactions and Chemical Kinetics | Order of rxns <br> Rate law expression <br> Factors affecting rate and rate constant <br> $\mathrm{T}_{1 / 2}$ <br> Collision theory <br> Arrhenius equation <br> Potential energy diagram ( $\mathrm{E}_{\mathrm{a}}$, catalysts, transition state) <br> Rate determining step <br> Mechanisms and validation of mechanisms <br> Integrated rate laws | M M M M M M M M M M |
| Chemical Equilibrium | Definition of equilibrium <br> Homo \& hetero equilibrium expressions <br> Mass action expression $\left(\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{w}}, \mathrm{K}_{\mathrm{p}}, \mathrm{K}_{\mathrm{sp}}\right)$ pH <br> Reaction quotient <br> Common ion effect <br> Henderson/Hasselbach equation <br> Buffers a\& perturbations <br> Le Chatelier's Principle <br> Gibbs free-energy expression | M M M M M M M M M M |
| Electrochemistry | Redox <br> Nernst equation <br> Reduction potential <br> Cell notation and diagrams <br> SHE electrode <br> Activation series <br> Voltaic and electrolytic cells <br> Gibbs free-energy expression <br> Applications <br> Balancinf redox equations (acidic \& basis sol'ns) | M M M M M M M M M M V M |
| Solutions | Properties of liquids <br> Dilutions <br> Solubility rules <br> Colligative properties <br> Henry's law <br> Concentration expressions <br> Intermolecular attractions | M M M M M M M |
| Intermolecular Forces, Solids, \& Liquids | Unit cells \& types <br> Vapor pressure <br> Solid types <br> Phase diagrams <br> Lattice types and units | $\begin{gathered} \hline \mathrm{O} \\ \mathrm{M} \\ \mathrm{M} \\ \mathrm{M} \\ \mathrm{O} \end{gathered}$ |
| Thermodynamics | Changes in enthalpy, entropy, Gibb's free energy <br> Relative to reaction spontaneity <br> 3 laws <br> Standard enthalpy <br> Thermodynamics vs kinetic control <br> Energy diagrams <br> Hess's Law | $\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{~V} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$ |
| Nuclear Chemistry (optional) | Types of radioactive decay Safety <br> Half-life <br> Nuclear stability <br> Fusion and fission | $\begin{aligned} & \hline \mathrm{O} \\ & \hline \end{aligned}$ |


| Organic Chemistry | Functional groups | V |
| :--- | :--- | :--- |
|  | Nomenclature | V |
|  | First ten (alkanes, alkenes, alkynes) | V |
|  | Isomer's | V |
|  | Review Lewis Structures | V |
|  | Intro to mechanisms | V |

