NOTES: t-distributions

Hypothesis tests and confidence intervals involving mean μ with unknown σ.

Suppose that hypothesis tests and confidence intervals involving μ are provided with a known standard deviation of the population (σ). This would enable us to calculate the standard deviation of the sample mean distribution since $SD(\bar{x}) = \frac{\sigma}{\sqrt{n}}$, where n is the sample size. We now assume that σ is not known (as is most generally the case in real life), and therefore replace $SD(\bar{x})$ with the Standard Error of the Mean. In other words, we use $SE(\bar{x}) = \frac{S_x}{\sqrt{n}}$, where S_x is the standard deviation of the sample. This, however, causes a problem since the S_x fluctuates with the sample size n in such a way as to create a different (possible not normal) distributions for each sample size n. Each of these distributions is called a t-distribution.

Facts about t-distributions:
- bell-shaped curve
- mean = 0
- symmetric about 0
- Each one is different from the standard normal curve. As n gets larger the t-distributions get closer to the standard normal curve. When $n \geq 30$ the t-distributions are almost normal (are very close to the standard normal curve).
- degrees of freedom $= n - 1$. The degrees of freedom (df) indicate which t-distribution you will use.

For hypothesis tests, we will use a “t-test statistic” or “t-score” instead of a z-score. The equation for the t-score is $t = \frac{\bar{x} - \mu_0}{S_x/\sqrt{n}}$, where μ_0 is the assumed population mean from the null hypothesis H_0. You will also need to use tcdf instead of normalcdf on your calculator. 2^{nd} VARS tcdf. Inputs are tcdf(LB, UB, df).

For confidence intervals we will use t^* instead of z^*. The t^* value depends on the t-distribution you are using, and so depends on the degrees of freedom ($n - 1$). t^* cannot be obtained from your graphing calculator and so it must be looked up on a table in your textbook. The formula for a confidence interval for means (with unknown σ) is $\bar{x} \pm t^* \frac{S_x}{\sqrt{n}}$.

Requirements for using t-distributions:
1. SRS: The sample mean must be chosen from a random sample.
2. Sufficiently large sample size:
 a. CASE: $n < 15$. The data should be very close to a Normal model. Do not use t-methods if there is strong skewness or outliers.
 b. CASE: $15 \leq n < 40$. t-methods should work as long as the data is unimodal and reasonably symmetric (make a histogram). t-methods should not be used in the presence of outliers or strong skewness.
 c. CASE: $40 \leq n$. t-methods can be used even in the presence of strong skewness or a few outliers. In this case t-methods are called “Robust.”