That old refrigerator...

1) The lifetime of a refrigerator is a normal distribution with a mean of ten years and a standard deviation of 1.5 years.
a) Sketch the distribution of X which represents the lifetime of this particular brand of refrigerator.

b) What percentage of refrigerators last between 6.2 and 9.1 years?
normalcdf(6.2, 9.1, 10, 1.5) $=0.2686038705$
About 26.86\% .
c) What percentage of refrigerators last more that 12 years and 6 months?
normalcdf($12.5,1 \mathrm{E} 99,10,1.5)=0.0477903304$
About 4.78\%.
d) What percentage of refrigerators last less than 5 years?
normalcdf $(-1 \mathrm{E} 99,5,10,1.5)=4.291165336 \mathrm{E}-4$
About 4.29E-4 $=0.000429=0.0429 \%$.
e) Would it be highly unlikely for a refrigerator to last less than five years?

Justify your answer.
It is highly unlikely that a refrigerator lasts less than 5 years based on part d). You can also see this from the picture in part a). Only 0.04% break down during this time, or about 4 out of every 10,000 refrigerator breaks (recall 0.0004 is equal to 4 divided by 10,000).
f) How long does a refrigerator last if its lifetime is not in the upper 10% ?
$\operatorname{Invnorm}(0.90,10,1.5)=11.92232735$
About 11.92 years or less.
g) How long does a refrigerator last if its lifetime is in the MIDDLE 50\%?

We use Invnorm to find the upper bound of the middle 50%. Using the symmetry of the normal curve, we find that the area to the left of this upper bound is $50 \%+25 \%=75 \%$. Therefore

```
upper bound = Invnorm(0.75,10,1.5)=11.01173462 years
```


Furthermore

lower bound $=\operatorname{Invnorm}(0.25,10,1.5)=8.988265376$ years.
In conclusion, a refrigerator lasts between about 9 and 11 years if its lifetime is in the middle 50% of all refrigerator lifetimes.
2) Sketch the area on the Standard Normal Curve that represents the probability of the following events and then determine with your calculator the probability.

3) A z-score tells us how many standard deviations a particular value is from the mean. Assume that exam scores are normally distributed. An instructor gives an exam where the mean is 78 and the standard deviation is 8 .
a) Find the z -score for someone who makes 100 on the exam.

$$
z=\frac{100-78}{8}=2.75
$$

b) Find the z -score for someone who makes a 70 on the exam.

$$
z=\frac{70-78}{8}=-1
$$

c) If you make a 90 on the exam, how many standard deviations above the mean are you?

By definition, this is the same as the z-score. $z=\frac{90-78}{8}=1.5$
d) If I tell you that you are 2 standard deviations below the mean, what grade did you make?

Here the z -score is -2 . So $-2=\frac{x-78}{8}$. Solving for x gives a grade of $x=62$.
e) Use the z -score formula to verify that an exam score of 74 corresponds to a z -score of -0.5 .

To verify this we plug all information into the z-score formula and arrive at a true statement.
$-0.5=\frac{74-78}{8}$
$-0.5=\frac{-4}{8}$
$-0.5=-0.5$

