The limit of a function (Basics)
Consider the function  for values of x near 2. The table below gives the values of when x is closed to 2, but not equal to 2. We can see that the closer x approaches 2 from either side, the closer  approaches 4. 
[image: ]
To express this situation we can write. 
In general, the limit of the function  tell us what value the function is “approaching to” when  is approaching a number say  in the domain of the function. The limit of the function does not refer to f (a) (the value the function takes at.)
[image: ]
Example1: Consider the piecewise function.  Find, and 
Solution: This is a linear function with a discontinuity at. We can see that when x approaches 1,  approaches 2, so, whereas.
[image: ]
From this example we can see that.

Example 2: Find, and  in the figure below:
[image: ]                        [image: ]
Solution: We can see that when x approaches 3,  approaches 4, so. Since 3 is not in the domain of , is undefined.
From this example we can see that the limit exists at 3 even though  is undefined.
One- Sided Limits
[image: ]
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The theorem tells us that for the limit to exist, the limit from the right has to equal the limit from the left.
Example 3:  A Function with a Jump Findand  in the figure below:
[image: ]
Solution: As x approaches 2 from the left,  approaches 4. Therefore, 
As x approaches 2 from the right,  approaches 1. Therefore,  
 does not exist (DNE) because . (The right limit differs than the left limit)

Finding Limits Algebraically (Limits Laws)
[image: ]
Example 5: Using the Limit Laws
[image: ]
Solution: (a) From the graph, we see that and.
Therefore   Using Law 1 (Limit of a Sum) 
			               Using law 3 (Limit of a Constant Multiple)
			            
(b)From the graph, we see that, but  does not exist because the limit from the right does not equal the limit from the left; so  does not exist. We cannot use Law 4 (Limit of a Product)
	(c)From the graph, we see that, but. We cannot use Law 5 (Limit of 
	a Quotient). The limit does not exist because the denominator approaches 0.
	(d)From the graph, we see that, so using Law 6 (Limit of a Power), we get 
	
Example 6: Finding Limit by Canceling Common Factors. Find .
Solution: 
Example 7: Finding Limit by Simplifying. Find .
Example 8: Finding Limit by Rationalizing. Find 
Solution:  where we have multiplied numerator and denominator by the conjugate of the numerator. This makes the numerator a difference of squares, so .  
Example 9: Comparing Right and Left Limits. Find .
Solution: Since  for  and  for, for  and  for. Since the right-hand and left-hand limits are different, it follows that  does not exist. 
Example 10: The Limit of a Piecewise Function. Find if it exist, where  

Solution: Since,.
	  Since,.
Since the right and left-hand limits are equal, the limit exist, and .





Infinite Limits
[image: ]
Example 4: An Infinite Limit Find and 
Solution: The graph of  in figure below shows that as x approaches 1 from either side, the values of  grow arbitrarily large, so the limit does not exist and we write 
As x approaches −1 from either side, the values of  are negative grow arbitrarily large in magnitude, so the limit does not exist and we write 
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THEOREM Relationship Between One-Sided and Two-sided Limits
Assume f is defined for all x near a except possibly at a. Then lim f(x) = L if
and only if lim_f(x) = Land lim f(x) = L. e

x—a x—a
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Assume lim f(x) and hm g()) exist. The following properties hold, where ¢ is a
x—a X

real number, and m > 0 and n > 0 are integers.

L Sum lim [£(x) + ()] = lim f(x) + lim g(x)
2. Difference lim [f(x) — g(x)] = lim f(x) — lim g(x)
3. Constant multiple lim [ef0)] =¢ lim flx)

4. Product lim [/(x)g(x)] = [_gig‘llf(X)][\!ij}, g(x)]

5. Quotient lim

x—a

-

6. Power lim [f(x)]" = [llmf(x)]"

—a
7. Fractional power lim [f(x)]"/" = [lim f(x)]"/’",provided f(x) = 0, for
x—a x—>a

x near «, if m is even and n/m is reduced to lowest terms
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DEFINITION Infinite Limits

Suppose f is defined for all x near a. If f(x) grows arbitrarily large for all x suffi-
ciently close (but not equal) to a, we write
lim f(x) = o.
x—a
We say the limit of f(x) as x approaches a is infinity.
If f(x) is negative and grows arbitrarily large in magnitude for all x sufficiently
close (but not equal) to a , we write
lim f(x) = —o.
xX—a
In this case, we say the limit of f(x) as x approaches a is negative infinity. In both
cases, the limit does not exist.
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DEFINITION One-Sided Infinite Limits

Suppose f is defined for all x near a with x > a. If f(x) becomes arbitrarily large
for all x sufficiently close to a with x > a, we write lim_f(x) = =

xX—a
The one-sided infinite limits lim_f(x) = —% , lim f(x) = «,and lim f(x) = —=
xX=a Xx—=a x—=a

are defined analogously.
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DEFINITION Limit of a Function

Suppose the function  is defined for all x near a except possibly at a. If f(x) is
arbitrarily close to L (as close to L as we like) for all x sufficiently close (but not equal)
10 a, we write

lim f(x) = L

x—a

and say the limit of f(x) as x approaches a equals L.




image3.png




image4.png
s . y=je





image5.png
() approaches 4.

3
As x approaches 3




image6.png
DEFINITION One-Sided Limits

1. Right-sided limit Suppose f is defined for all x near a with x > a. If f(x) is
arbitrarily close to L for all x sufficiently close to a with x > a, we write

lim f(x) = L

X—a

and say the limit of f(x) as x approaches « from the right equals L.

2. Left-sided limit Suppose f is defined for all x near ¢ with x < a. If f(x) is
arbitrarily close to L for all x sufficiently close to a with x < a, we write

lim f(x) =L

X—a

and say the limit of f(x) as x approaches a from the left equals L.
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