
Integrating Functions of Several Variables 
 
16.1  The Definite Integral of a Function of Two Variables 
 
Consider z = f (x, y) continuous on a bounded region R on the x-y plane.  If we divide R into n sub-regions 
R1 …Rn of areas ∆��…∆��respectively, with each sub region Rk containing the point Pk (xk, yk), 
 lim�→	∑ ��� , ������ �∆�� � � ��, ����� , where dA can be dxdy or dydx in the Cartesian coordinate system. 
 

 � ���	���  is the area under the curve y = f (x) in [a, b], and if f (x) = 1, � ���	���  is the length [a, b].  If we 

extend this concept one dimension, we can say � � �	�, ���	�����  is the volume under the surface 

z = f (x, y) in the rectangle [a, b] x [c, d], and if z = f (x, y) = 1, � � �	�, ���	�����  is the area of the rectangle. 
 
Average Value of a Function 
 
If f (x, y) is piecewise continuous in a bounded region R with piecewise smooth boundary, 

 then	���� � �
����		� ��, ����� . 

 
 
eg 1  The table below gives the value of z = f (x, y). R is the rectangle 1 ≤ x ≤ 1.2, 2 ≤ y ≤ 2.4. Find the Riemann 
sums which are a reasonable under and over-estimates for � ��, ����� . with ∆x = 0.1 and ∆y = 0.2.  Find the 
average value of f in R. 
 

y/x 1.0 1.1 1.2 
2.0 5 7 10 
2.2 4 6 8 
2.4 3 5 4 

 
For ∆x = 0.1 ∆y = 0.2, the over-estimate will be the sum of the area of each square times the largest value the 
function takes at any of the corners any sub-rectangle.  Since ∆x = 0.1 x ∆y = 0.2, the area of each square will 
be ∆x ∆y = 0.02.  The upper sum will be 0.02(7+6+10+8) = 0.62. The lower sum will be 0.02(4+3+6+4) = 0.34  
For ∆x = 0.1 ∆y = 0.2, we can say that 0.34 < � ��, �����  < 0.62. 
 

We can get a better estimate if we average the two sums, or � ��, ����� 	≈ 
 .!"# .$%

% � 0.48. 
The average value of the function will be ���� � �

)*)�+	���� 	� ��, ����� �  .",
� .%�� ."� � 6. 

 

eg 2  The figure below shows the contours of f (x, y) on a square R.  Using ∆x = ∆y = 
�
%, find Riemann sums 

which are reasonable over and under-estimate for � ��, ����� . Repeat the same problem using ∆x = ∆y = 1 
 
 
 
 
 
 
 



 
 

For ∆x = ∆y = 
�
%, the over-estimate will be the sum of the area of each square times the largest value the function 

takes at any of the corners of that sub-rectangle.  If we start counterclockwise with the square at (0, 0), an over-

estimate of the integral will be 
�
" �12.8 0 10.8 0 12 0 17� � 13.15. 

For ∆x = ∆y = 
�
%, the under-estimate will be the sum of the area of each square times the smallest value the 

function takes at any of the corners of that sub-rectangle.  If we start counterclockwise with the square at (0, 0), 

an under-estimate of the integral will be 
�
" �9.8 0 7 0 9.8 0 10.8� � 9.35. 

For ∆x = ∆y = 
�
%, we can say that 9.35 < � ��, ����� < 13.15. 

We can get a better estimate if we average the two sums, or � ��, ����	� ≈ 
�!.�5#6.!5

% � 11.25. 

If we used the value of the function at the center if the squares, we obtain 
�
" �13 0 11 0 9.8 0 10.8� � 11.15. 

For ∆x = ∆y = 1, the over-estimate will be 17 and an under-estimate 7.  If we average the two values, we get  � ��, ����� ≈ 
�7#7
%  = 12. 

 
Homework 16.1 

 
1. Approximate the Riemann sum for � 8�, �����  in 0≤ x ≤4, 0≤ y ≤4 using four partitions as shown in 

the figure below.  Ans: 312 
 

2. Approximate the Riemann sum for � 9�, �����  in 0≤ x ≤40, 0≤ y ≤40 using one partitions as shown in 
the figure below.  Ans: 8480 
 

                                                        
 

3. Table below gives the values of the function	:�, ��. Find an over and underestimate of � :�, �����  to 
approximate the integral in 0≤ x ≤6, 0≤ y ≤2 by using four partitions 

 
y/x 0 3 6 

0 3 4 6 

1 4 5 7 

2 5 7 10 

 
 Ans: Over 87; under 48; estimate 67.5  



 
 
16.2  Iterated Integrals 
 
Iterated Integrals over Rectangular Regions 
 
If I is an iterated integrals over a rectangular region, the integration can be switched. 
 
Fubini’s Theorem: 
If f (x, y) is continuous in the rectangle R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}, then  
 ; � � ��, ����� � � � ��, ����� � � � ��, ������������� . 
 

eg 3  � � � 0 �%���� � � �� 0 <=
!

� % � �|<� <�%� � � �2� 0 ,
!�� � ��

! . 

    � � 	�� % 0 �%���� � � �?@%% 0 �%�|?� ?���� � � ��%% 0 �%��� � ��
! .  

 
eg 4  The figure below shows the contours of f (x, y) = x2 + y2.  Using ∆x = ∆y = 1, estimate � ��, ����� by finding the average of an over-estimate and under-estimate of the integral for  
0 ≤ x, y ≤ 3.  Repeat the problem by evaluating the integral. 
 
 
 
 
 
 
 
 
 
 
 

Exact will be � � �% 0 �%! �! ��� � � 9 0 3�%! �� � 54. 
The over-estimate will be 1(3 + 6 + 10 + 13 + 9 + 6 + 10 +13 + 18) = 91. 
The under-estimate will be 1(0 + 2 + 5 + 6 + 3 + 2 + 5 + 6 +9) = 30. 
The average will be � ��, ����� A 60.5 with relative error in 12% 
 
eg 5  � � BCDE���F���G %�  has to be integrated by parts. 
Let u = x, du = dx; dv = cos(xy); v = sin(xy)/y. 

So � � Bcos���F��� � � �?<%�G %� sin���� | G L � �sin���/������ �G   

� �G<%� sin�N�� 0 �
<@ cos�N�� L �

<@��� � � G
<

%� sin�N�� �� 0 � �
<@

%� cos�N�� �� L � �
<@

%� ��. 

If we integrate by parts the first integral with u = 
�
<; du = L �

<@ ; �P � sin�N�� ��; and 

P � Lcos�N�� /N, the integral becomes L �
< cos�N�� |�% L � �

<@
%� cos�N�� �� 0 � �

<@
%� cos�N�� �� 0 �

< |�% � L2. 

This integral will be easier to compute if we switch the integrals. 



� � BCDE���F��� � � EQR	���|<��<�%G %�G � = � (EQR(2) − sin	())� = −2G   
 
 
Iterated Integrals over General Regions 
 
In general, the limits of integration do not need to be over rectangular regions.  Since an integral is a function of 
its limits, the inside integral should be a function of the outside variable of integration.   
 
Type I 
If the region of integration in the x-y plan is bounded above by y(x) = g2(x) and below by y(x) = g1(x) in  

a < x < b, the double integral will be � �(, �)��� = � � �	(, �)���S@(T)SU(T)
��  

eg 6  Find the area between y = sin(x) and y = cos(x) in 0 ≤ x ≤ N 4⁄ . 
  
 
 
 
 
 � � ��� = � (CDE() − EQR())� = EQR() + CDE	()| G "⁄G "⁄ WXY	(?)YZ[	(?)G "⁄ = √2 − 1. 

 
eg 7  Evaluate ��� 	]?@�� where R is the triangle (0, 0), (1, 0), (1, 1).  Since the region is bounded above by 

y(x) = x and below by y = 0 in 0 < x < 1.  The integral becomes� � ]?@? � ��� = 	� ]?@� = �T@%� | � = (�^�)% . 

 
Type II 
If the region of integration in the x-y plane is bounded at the right by x(y) = h2(y) and at the 

left by x(y) = h1(y) in c < y < d, the double integral will be � �(, �)��� = � � �(, �)���_@(`)_U(`)
��   

 
eg 8 Consider 	� ����  where R area bounded by � = √, � = 2 −  and y = 0 
  
 
 
 
 
 

A type II integral will be only one.  � � ���� = � (2� − �% − �!)�� = 5�%� %^<<@�  whereas a type I integral will 

be two double integrals � � ���� + � � ����%^? %�√? � .  
 
eg 9  Find � 	(2�)���  where R is bounded by y = x2 and y = √.  If we use a Type I integral, the region is 

bounded above by y(x) = √ and below by y(x) = x2 in 0 < x < 1.  The integral then becomes  � � (2�)��� = � (�%� √??@� )|?@√?� = � ( −� ")� = a�%− �5b = !� . 
 
If we use a Type II integral, the region is bounded at the right by x(y) = c� and at the left by 



x(y) = y2 in 0 < y < 1.  The integral then becomes � � (2�)��� = � (� √<<@� 2�)|<@√<�� =  

� (� 2�! %⁄ − 2�!)�� = a"5− �%b = !� . 
 
 
eg 10  Find � %��� 	 where R is bounded by xy = 4 and y = x, y = 0, x = 4. 
  
 
 
 
 
 
If we use a type I integral, we need two double integrals. � � %��� + � � %" ?⁄ "%? ��� = � !% % � + � 4� = 28"% . 
If we use a type II integral, we need also two double integrals. � � %"<� ��� + � � %" <⁄<%� ��� = 28. 

 
Reversing the Order of Integration 
Sometimes it is easier to reverse the order of integration to make the integration easier. 
 

eg 11  To evaluate� � ?c�#<@"?@% ���, we need the trig substitution y = tan (d).  The integral then becomes 

e e [E]C(d)ghWig[(")
j��)��(?@)

%
 ]�d�e [lR(sec(d) + tan(d))%

 |p�j��)��B?@Fp�j��)��(") � = 

� lRB√17 + 4 − √" + 1 − %F% �.   This type I integral is very complicated.  A simpler integral is found if 
we change the order of integration and make the integral a Type II integral.   

If we plot the region of integration, we obtain� � ?c�#<@"?@% ��� = � � ?c�#<@√< " ��� = � <%c�#<@" �� =
�% B√17 − 1F.  
 
 
 
 
eg 12  � � ]?@���!!<�  cannot be evaluated as it is.  If we change the order of integration, by plotting the region 

of integration, we obtain 
 
 
 
 
 
 � � ]?@��� = � ?�T@!! ?/! ! � = (�q^�)$ . 

 

eg 13  Evaluate ��� ��#?@ �� where R is the triangle (0, 0), (0, 1), (1, 1).  If we use a type I integral, 

 



� � ��#?@�?� 	��� = � a ��#?@ − ?�#?@b� � = rsR^�(1� L +�	�%�
% . 

 

If we use a type II integral, � � �
�#?@

< � ��� � � rsR^������� .  If we then integrate by parts, we obtain 

 

� rsR^������ � � rsR^����| �� L � <
�#<@

� �� � G
" L +�	�%�

% . 

 
Volumes Between Two Surfaces 
 
The volume between the surface t�*))*u � v�, �� and t)*w � x�, �� can be given by ��� Bt)*w L t�*))*uF��, where dA is either dxdy or dydx. 
 

                                               
 
eg 14  Find the volume bounded by the plane x + y + z = 1 in the first octant. 

Since t)*w � 1 L  L � and t�*))*u � 0, � � �1 L  L ����� � �
$

�^??� . 

 
eg 15  Find the volume bounded by the circular cylinders  x2 + y2 = 1 and x2 + z2 = 1. 
 
 
 
 
 
 
 
 
 
                        First octant view of the volume                                             Volume 
 
If we let R be the circle x2 + y2 = 1 with t)*w � √1 L % and t�*))*u � L√1 L %, the integral for the volume  
 

becomes � � a√1 L %—BL√1 L %Fb√�^?@^√�^?@�̂� ��� � � B2√1 L %F�̂� �|^√�^?@√�^?@ � � 4� �1 L %��̂� � � 

 8� �1 L %�� � � �$
! . 

 
 
 



eg 16  Find the volume in the first octant of the paraboloid f (x, y) = 2 – x2 – y2. 

� � (2 L % L �%�√%^?@ √% ��� � � z�2 L %�√2 L % L B√%^?@F=
! {√% � � %

!� �√2 L %�!√% �. 

If we apply the trig substitution, ,
!� CDE"�d � � ,

!
G %⁄ G %⁄ ��#�*| %p% �%�d � � %

!
G %⁄ a1 0 2 CDE 2d 0 a�#�*| "p% bb �d �  

 %
! a!%d 0 EQR 2d 0 |}� "p

, bk| G %⁄ � N 2⁄ . 

 
We can also find volumes of solids by integrating over the projection on the xz plane. 
If the region R is on the xz plane, the integral becomes	� �� �x�, t� L v�, t����	, where dA is either dxdz or 
dzdx. See picture below. Refer to homework problem 13. 
 

                                                  
  
We can also find volumes of solids by integrating over the projection on the yz plane. 
If the region R is on the yz plane, the integral becomes	� �� �x��, t� L v��, t����	, where dA is either dydz or 
dzdy. See picture below. Refer to homework problem 14. 
 

                                                
 
 
 
 



 
Homework 16.2 

 

1. � � (1 + %�%�̂� ���� 	 Ans: 20/9 
 

2. � � ]?<� ���+�% 	  Ans: 
�^+�%+�%  

 

3.    � � ]?#<� ���!�   Ans:  
 

4.   � � %�?√? ����   Ans: -1/40 

 

5. � � �EQRG ����   Ans: π/2 
 

6. Find the average value of f(x ,y)=x2y2 in  the rectangle  0≤ x ≤1, 0≤ y ≤2. 
Ans: 4/9 
 

7. Evaluate � �(, �)����   for  f(x ,y)=10x4y where R is the triangle with vertices (0,0),(0,2)(1,1). 
 Ans: 2/3 
 

8. Evaluate � �(, �)����   for f(x ,y)=4x3y where R is bounded by y = x2 and y = 2x. 
 Ans: 64/3 
 

9. Evaluate � �(, �)����   for f(x ,y)= y2cos(x) where R is bounded by x = y3 and the lines y = 0 and x=π. 
 Ans: -2/3 
 

10. Reverse the order of integration to evaluate � � ]^?@"<" ��� 

Ans: 
�% (1 − ]^�$) 

 
11. Find the volume of the tetrahedron bounded by coordinate planes and the plane with xint =1; yint = 1 and 

zint =1.  Ans: 1/6 
 

12. Find the volume of the solid bounded by the planes x=0, y=0, 2x+2y+z=2and 4x+4y –z = 4.  Ans: 1 
 

 
13. Find the volume of the solid bounded by y= x2+z2 and the plane y =−3 for (x,z) in the rectangle x=0, x=4, 

z=0,z=5.     Ans: 1000/3 
 

 
14. Find the volume of the solid between the surfaces x= −z2 and x= z2 +2 for (y,z) in the rectangle y=0, y=4, 

z=0,z=1. Ans: 32/3 
 
 
 
 
 



16.4  Double Integrals in Polar Coordinates 
 

Any point (x, y) in ~% can be expressed in Polar Coordinates as (�, d�, where	� � 	c% 0 �%;  tan�d� � <
? ;  � �CDE�d�; � � �EQR�d� are the transformations equations.  The area of the polar function	��d�, 

with a single integral, is given by Area = 
�
%� �%�d�� . 

 
eg 17  Find the area of the cardioid � � 1 0 CDE d. 
 

��]s � 	 �%� �1 0 CDE d�%%G �d. � �
%� �1 0 2 CDE d 0 CDE%d��d.� �

%
%G ad 0 2 EQR�d� 0 p

% 0 |}��%p�
" b | %G � !G

% . 

 
The area of the polar function	��d�, with a double integral, is given by  
 

��]s � � ��, ����� � � � ����d	where	the	element	of	area	�� � ����d�@�U
p@pU . 

 
eg 18  Find the area, using double integrals, for the previous problem. 
 

��]s � � � ����d � � ��#�*|p�@
%

%G �#�*| p %G �d � !G
% . 

 
eg 19  Find the area outside the circle r = 2 and inside the cardioid r = 2 + 2cosd 
 

��]s � � � ����d � 2� a�%#%�*| p�@% L %@
% bG %⁄ %#%�*| p%G %⁄^G %⁄ �d � � �8 CDE�d� 0 4CDE%�d���d �G %⁄ . 

e �8 CDE�d� 0 2�1 0 cos	�2d����d � 8 0 NG %⁄
  

 
eg 20  Evaluate the volume in the first octant of the paraboloid f (x, y) = 2 – x2 – y2. 
 

If we use polar coordinates, � � 	� � �2 L �%√% G %⁄ �����d � � �% L ��
"

G %⁄ | √%�d � � 1�d � N 2⁄G %⁄ . 

 

eg 21  Evaluate � � c% 0 �%	���√%?^?@ % . 
 
Since there is circular symmetry, we can change the integral to polar coordinates.  Since � � √2 L % or 
x2 + y2 = 2x, is the semicircle with center (1, 0) and radius 1, � � 2 CDE�d� in 0 < d	< N 2⁄ .  The integral 

becomes � � �����d � � ,��*| p�=
!

G %⁄ %�*|�p� G %⁄ �d � �$
6 . 

 
 
eg 22  Find the volume in the first octant between x2 + y2 = 9 and x + z = 3. 
 
 
 
 
 
 
 



In Cartesian Coordinates the integral becomes	� � (3 − )���√6^?@ ! .  If we change to polar coordinates, we 

have	� � (3 − � cos θ)����d = %7G"! 
�@ − 9. 

 
 

Homework: 16.4 
 

1. Use polar coordinates to evaluate the ��� ���� where R is the region bonded by the upper half of 
the cardioid r =1+cos(θ) and the x-axis.   Ans: 4/3 

2. What is the area inside one leaf of the rose r = 2 cos (3θ)?   Ans: π/3 
3. Use polar coordinates to evaluate the ��� ���� where R is the region bonded by the semicircle  � = √ − % and the x-axis.  Ans: 1/24 
4. Evaluate the ��� (% + �%)^%��� with R = {(x,y): 2 ≤ x2 + y2 

≤ 4}.     Ans: π/4 

5. Find the value of 
  

r3 sin2  θ dr dθ
0

–5secθ
∫3π / 4

4π / 3
∫  by first switching it from polar to rectangular 

coordinates. Ans: 
625

(3 3 1)
12

+  

6. The integrals (a) 
  

r 2

1+ r sinθ
dr dθ

secθ

2 cosθ
∫0

π / 4
∫  and (b) 

  
r5 sin2  θ dr dθ

0

4 cscθ
∫π / 4

3π / 4
∫ are given in 

polar coordinates.  Rewrite them as iterated integrals in rectangular coordinates. 

Ans: 
2 22 2 2 2

1 1 1 2 1 ( 1)

0 1 1 01 1

y xx y x y
dx dy dy dx

y y

+ − − −+ +
=

+ +∫ ∫ ∫ ∫ , 
4 2 2 2

0
( )

y

y
x y y dx dy

−
+∫ ∫  

 
 
 
Applications of double integrals:  
 
Average Value of a Function 
 
If f (x, y) is piecewise continuous in a bounded region R with piecewise smooth boundary, 

 then	���� = �����		� �(, �)��� = ∬�(?,<)�j∬�j . 

 
eg 23    Find the average value of f (x, y) = 2�]<@in	0 <  < 1; 0 < � < 	√. 

���� = � � %<�`@�<�?√T�U� � � �<�?√T�U� = (�^%)% !⁄ . 

 
Centroids (Center of Mass) 
 
The moment M (also called first moment) is defined as M = mr where m is the mass and r is moment arm 
(distance from the particle to the axis).  For a discrete system of particles of mass mi: In one dimension, the  
 
moment about the origin is given by                             , so the center of mass will be 
 ̅ = 8	/��}} 	= ��}} }/��}}  

8 =��}} } 



 
In two dimensions, the moment about the axis is given by  8? = ∑ �}} �} and  	8< = ∑ �}} } 
 

so the center of mass will be ̅ = �ù = ∑ �}} }/∑ �}} sR�	�� = �Tu = ∑ �}} �}/∑ �}}  

For a one dimension continuous system with mass density (linear) �, the center of mass will be 
 ̅ = �Tu = ��?�?���? .  If the mass density is uniform (constant), ̅ = ��?�?���? = �?�?��? . 

For a two dimensions thin plate with a uniform (constant) mass (area) density � bounded by the function 
f (x) – g (x), the center of mass will be 
 

̅ = �ù = � �?[�(?)^S(?)]�?����B�(?)^S(?)F�? and	�� = �Tu = U@� ���@(?)^S@(?)��?����B�(?)^S(?)F�? . 

 
eg 24  Find the centroid of the triangular lamina bounded by y = 2x, y = 0, x = 1 with uniform density 3gm/cm2. 

̅ = �ù = � !?[%?^ ]�?U�� !(%?)�?U� = %! ; and	�� = �Tu = U@� ![B%?)@^ @��?U� � !(%?)�?U� = %!  
 
For a two dimensional thin plate with non-uniform (variable) mass density	�(, �). ̅ = �ù = ��?�(?,<)�j����j 	and	�� = �Tu = ��<�(?,<)�j����j . 

 
eg 25  Find the centroid of the triangular lamina with vertices (0, 0), (1, 0) and (0, 1) with mass density �(, �) = �	�v/�%. 
 

̅ = �ù = � � ?@<	�<�?U�T�U�� � ?<	�<�?U�T�U� = %5 	and	�� = �Tu = � � ?<@	�<�?U�T�U�� � ?<	�<�?U�T�U� = %5. 
 
eg 26  Find the centroid of a lamina shaped in the form of a quarter circle or radius 1 with density proportional 

to the distance from the center of a circle.  Because of the symmetry, ̅ = ��.  Since  � = �c% + �% , if we use 
polar coordinates,  

̅ = �� = � �?�(?,<)�j����j = ���	c?@#<@	�j���	c?@#<@	�j = � � � �*|(p)�����pU�� @⁄� � � �����pU�� @⁄� = � ���(�)� �p� @⁄� � U=� @⁄� �p = !%G. 

 
 
Moments of Inertia of Plane Area 
 
The moment of inertia I (also called second moment) is defined as M = mr2 where m is the mass and r is 
moment arm (distance from the particle to the axis).  The moment of inertia of a plane area about an axis relates 
the angular acceleration about the axis to the force twisting the plane area (torque).  The moment of inertia of a 
plane lamina of density �(, �) about an axis is defined as �� �% �� where p is the perpendicular distance from 
a point (x, y) to the axis and dm = �(, �)��	where	�(, �) is the area density, dA is the element of area and dm 
is the element of mass. 
The moment of inertia about the x-axis will be	;? = ���% �(, �)��. 
The moment of inertia about the y-axis will be	;< = �� % �(, �)��; 
The moment of inertia about the origin (polar moment) will be	; = ;? + ;< = ��(% + �%)�(, �)��. 
 



eg 27  Find Ix, Iy and I0 of a lamina of constant density k, bounded by x = y2, x = – y2 in – 1 ≤ y ≤ 1. 
 ;? = � � �%<@^<@�̂� ���� = � � 2�"�̂� �� � � "

5 ; 	;< � � � � %<@^<@�̂� ��� � � � %
!

�̂� �$�� � � "
%� ; 	; � � � "

� 5. 
 
eg.  Find the moment of inertia about the origin on a lamina bounded by circle x2 + y2 = 4 with density ��, �� � � a constant. ; � ;? 0 ;< � ���% 0 �%���, ����. � � � �%����d � 8�N% %G . 
 
Area of a Surface Described by z = f (x, y) 
 
The area of the surface z = f (x, y), (x, y) in D, where f, fx and fy are continuous is given by 
 ��E� � ���c�?%�, �� 0 �<%�, �� 0 1��. 
 
eg 28  Calculate the surface area of the portion of the surface z = xy for D : x2 + y2 ≤ 9. 
 

��E� � � ��c�% 0 % 0 1	�� � � � √�% 0 1! %G 	����d � %G
! ��% 0 1�=@ � %G

! �10=@ L 1�. 
 
eg 29   Find the surface area of the volume in the first octant bounded by the circular cylinders 
x2 + y2 = 1 and x2 + z2 = 1. 
 
 
 
 
 
 
 

The area of the volume in the x-y 	��� � G
" 0 G

" 0 1 0 � � � 2 0 G
%

�  square units. 

 
 
 

Homework 
 

1. Find the average value of f(x ,y)=x2y2 in  the rectangle  0≤ x ≤1, 0≤ y ≤2. 
Ans: 4/9 

2. A plate in the xy-plane with distances measured in ft. occupies the region bounded by the parabola 
 y=x − y2 and the x-axis and its density at (x, y) is 6x2 lb/ft2. (a) How much does the plate weigh? (b) 
Where is the center of gravity?   Ans: (a) 3/10 lb, (b) (2/3,2/21) 

3. Find the centroid of the quarter circle lying between � � √1 L % and the y-axis for 0≤ x ≤1 with 

density ρ=1. Ans: � "
!G , "!G� 

4. A flat disk occupies the disk  x2 −2x+ y2  ≤ 0 in the xy –plane with distances measured in inches and, and 

its area density at (x,y) is  � � 5c% 0 �% ounces per square inch. Where is the center of gravity?   
Ans: (6/5,9/20) 
 

 
 



 
16.3  Triple Integrals 
 
 
Let f (x, y, z) be a continuous function in a regions V in ~!.  The triple integral over R is ��� �(, �, t���   
where dV = is an element of volume.  If f (x, y, z) = 1, the triple integral will give the volume of the region V. 
 
Iterated Integrals over Rectangular Regions 
 
If I is an iterated integrals over rectangular region, the integration can be switched. 
 

; � � � � ��, �, t�����t � � � � ��, �����t� � � � � ��, ���t���…������������������   
 

eg 30   � � � tEQR����t��� � �
�%

� G 
U@U=

0 √!^%"G 	C¢ units. 

 
Iterated Integrals over General Regions 
 
Type I 
 
If the region of integration in ~! is bounded above by the function h (x, y) and below by the function g (x, y) in 

the area A in the xy plane, the triple integral will be	� ��, �, t���  � �� a� ��, �, t��t_�?,<�S�?,<� b ��, where dA is 

dxdy or dydx. See figure below. 
 

                                                         
 
eg 31  Find ��� ��   where R is the region bounded by the plane y = z, and the cylinder x2 + y2 = 1 in the first 
octant. 
 
 
 
 
 
 
 
Since the region is bounded above by y = z and below by the xy plane, the integral becomes 

� � B� 	�t< Fc�^<@ � ��� � �
,. 



 
eg 32  Find the volume bounded by the parabolic surface t = c� the plane x + y = 1 and the x-y plane. 
 
 
 
 
 
 � = � � � 1�t��� � � � c��^? � √< �^? � 	��� � � %

!
� �1 L �! %⁄ � � %

!
%
5 �1 L �5 %⁄ |� � "

�5. 
  
Type II 
 
If the region of integration in ~! is bounded in the front by the function g2 (y, z) and in the back by the function 
g1 (y, z) in the area A in the yz plane, the triple integral will be 

��� ��, �, t���  � �� a� ��, �, t��_�<,£�S�<,£� b �� ,  where d A is dydz or dzdy. See figure below. 

 

                          
 
eg. 33  Set ��� ��   where V is the region bounded by the plane x = 1, and the paraboloid x = y2 + z2. 
 
 
 
 
 
 
Since the region is bounded in the back by x = y2 + z2 and in the front by the x = 1 plane, the integral becomes 

� � a� ��<@#£@ b√�^£@^√�^£@�̂� ���t. 

 
A simple way of solving this integral is defining a polar coordinate system in the y-z plane such that � � � CDE�d�, t � � EQR�d�	with	�% � % 0 �%	and	 rsR�d� � £

< . 

If we do so, the integral becomes � � a� 	���@ b� %G ����d � N 3⁄  . 

 
 
 



 
Type III 
 
If the region of integration in ~! is bounded in the right by the function g2 (x, z) and in the left by the function  
g1 (x, z) in the area A in the yz plane, the triple integral will be ��� �(, �, t���  � �� a� ��, �, t���_�?,£�S�?,£� b �� , where d A is dxdz or dzdx 

 

 
 
eg 34  Find ��� ���   where V is the region bounded by the cylinder x2 + z2 = 4, and the planes y = 0 and 
y = 6. 
 
 
 
 
 
 
Since the region is bounded in the right by the plane y = 0 and in the right by the y = 6 plane, the integral 

becomes	� � a� �	��$ b√"^?@^√"^?@%̂% �t� � 72N.  

A simple way of solving this integral is defining a polar coordinate system in the x-z plane such that   � � CDE�d�,			t � � EQR�d�				with	�% � % 0 t%	and	 rsR�d� � £
? . 

If we do so, the integral becomes	� � a� ���$ b ����d � 72N% %G . 

 
Average Value of a Function 
 
If f (x, y, z) is piecewise continuous is a bounded region with piecewise smooth boundary, then 

���� � �
�*+¤u� �����, �, t��� � �� ���?,<,£�� 	� � � �  . 

 
eg 35  Find the average value of f (x, y, z) = xyz in 0 < x < 1; 0 < y < x3; 0 < z < 8. 

As a Type I integral, ���� � � � � ?<£	�£�<�?¥�T=�U�
� � � �£�<�?¥�T=�U�

� %
% � 1  

 



 
Centroids 
 
Definition:  If �(, �, t) is a mass (weight) density, the mass (weight) is given by � = � � ��	�(, �, t)	�� . 
 

The centroid will be ̅ = �`¦u = � � �?�	(?,<,£)� � � ���  , �� = �T¦u = � � �<�	(?,<,£)� � � ���  , t̅ = �T`u = � � �£�	(?,<,£)� � � ���    

 
Moments of Inertia of a Solid Body 
 
The moment of inertia of a solid body about an axis relates the angular acceleration about the axis to the force 
twisting the solid (torque).  Moment of inertia of a solid body of density �(, �) about an axis is defined as ����% ��, where p is the perpendicular distance from a point (x,y,z) to the axis and dm = �(, �, t)�� where �(, �, t) is the volume density, dV is the element of volume and dm is the element of mass. 
The moment of inertia about the x-axis will be	;? = ���(�% + t%)	�	(, �, t)��. 
The moment of inertia about the y-axis will be	;< = ���(% + t%)	�	(, �, t)��. 
The moment of inertia about the y-axis will be	;£ = ���(% + �%)	�	(, �, t)��. 
 

Homework: 16.3 
1. Express ��� �(, �, t)��   as an integral where V is the solid bounded by z = 0, z =1−y2, x = −2 and 

x = 0 as a Type I integral. 

Ans � � � ��t���	�^<@ �̂� ̂%  

2. What is the value of F dx dy dz
V∫∫∫  if F is the constant function F(x, y, z) = 7 and V is a bounded 

solid with piecewise smooth boundary whose volume is 10?  (b) What is the average value of F in V 
for the function and solid part (a)? Ans: 70,7 

3. A block occupies the region bounded by x = –2, x = 2, y = –2, y = 2, z = 1, and z = 2 in xyz-space 

with distances measured in meters and its density at (x, y, z) is x2ey sin z kilograms per cubic meter.  

What is its mass? Ans: 2 216
(cos(1) cos(2))( )

3
e e−− − kg. 

4. A solid V bounded by z = x2 + 1, z = –y2 – 1, x = 0, x = 2, y = –1, and y = 1 in xyz-space with 

distances measured in feet contains electrical charges with density 8xy2 coulombs per cubic foot at 
(x, y, z).  What is the overall net charge in V ? Ans:736/15 
 

5. What is the average value of f = xy3z7 in the box V bounded by x = 0, x = 2, y = 0, y = 2, z = 0 and z 
= 2? Ans:32 

6. Describe the solids of integration that lead to the iterated integrals: 

    
f x ,y,z( )

z=0

z= 4-x2−y2

∫y=0

y= 4-x2

∫x=0

x=2
∫ dz dy dx  

Ans: one fourth of an upper hemisphere centered at the origin with radius 2, with x ≥0 and y ≥ 0. 
 

7. Describe the solids of integration that lead to the iterated integrals: 
 

 
1 2 2 4–4 –2

0 0 0
( , , )

y z y x y z

y z x
f x y z dxdzdy

= = − =

= = =∫ ∫ ∫  



 Ans: The tetrahedron bounded by the plane  − 4� L 2t � 4 and the coordinate planes. 

8. Evaluate 2 2   
V

x y z dV∫ ∫ ∫  with  V  bounded by 0 < x < 1, 0 < z < x2 − y2 . Ans: k=4/525 

9. Find k such that 2 1

60V
x z dV=∫ ∫ ∫  where V bounded by z = 0, z = x, x = 0, y = 0, and 

x + y = k. Ans: k=1 

10. What is the centroid of the cylinder V = {(x, y, z): x2 + y2 

€ 

≤ 4, 0 

€ 

≤ z 

€ 

≤ 1} in xyz-space with 
distances measured in feet if its density at (x, y, z) is cos z pounds per square foot? 

Ans: 
sin(1) cos(1) 1

( , , ) (0,0, )
sin(1)

x y z
+ −=  

 
 
16.5  Integrals in Cylindrical and Spherical Coordinates 
 
Cylindrical Coordinate System 
 
Any point (x, y, z) in ~! can be expressed in Cylindrical Coordinates as ��, d, t� where  � � c% 0 �%; 	rsR�d� � <

? ; t � t;  � � CDE�d�; � � � EQR�d� are the transformation equations,  

for 0 § � � ∞, 0 § d § 2N, L∞ � t � ∞. 
 
If c is a constant, r = c is a cylinder; d � C is a plane; z = c is a plane. 
 

 
 
A triple integral in cylindrical coordinates is given by � ��, �, t����  
 

� � � ��� cos�d�,�@�U
p@pU

£@£U 	� sin�d�, t�	��t���d	where	the	element	of	volume	�� � ��t���d . 

 
 
eg 36  Use a triple integral to find the volume bounded by the cylinder x2 + y2 = 4 and the sphere 
 x2 + y2 + z2 = 9. 
 
 
 
 



 
 
 

In Cartesian Coordinates the volume is � � � �t���c6^?@^<@^c6^?@^<@√"^?@^√"^?@ %̂% .  If we change to cylindrical 

coordinates, we have � � � ��t���d = "G!√6^�@^√6^�@% %G B27 L 5√5F	C¢	¢RQrE. 
 

eg 37  Compute the triple integral of f (x, y, z) = c% 0 �% bounded by the paraboloid x2 + y2 + z = 1 and the 
plane z = 0. 
 
 
 
 
 
 

� � � c% 0 �%�^?@^<@ √�^?@^√�^?@ �̂� �t��� � � � � �%�^�@ � %G �t���d � � � �%� %G �1 L �%����d �
2N a�! L �

5b � "G
�5. 

 
Spherical Coordinate System 
 
Any point (x, y, z) in ~! can be expressed in Spherical Coordinates as ��, d, «� where � � c% 0 �% 0 t%; 	 rsR�d� � <

? ; 	CDE « � £
� � £

c?@#<@#£@ ;   � � EQR�«� cos�d� ; � � �EQR �«� EQR�d� ; t � �CDE	�«� are the transformations equations for 
 0 § � � ∞, 0 § d § 2N, 0 § « § N 
If C is a constant, � � C	is	a	sphere; 	d � C	is	a	plane; 	« � C	is	a	cone. 
 
 
 
 
 
 
 
 
 
A triple integral in spherical coordinates is given by � ��, �, t���� � 

� � � ��� EQR�«� CDE�d�, � EQR�«��@�U
p@pU

@U EQR�d�, � CDE�«���% EQR�«����d�« where the element of 

volume �� � �% EQR�«����d�«. 
 
eg 38  Find the volume bounded by the cone « � G

! and the sphere � � 4. 

 
 
 
 
 
 



� = � � � �%" %G 
�= sin�«����d�« � $"G

! 	C¢	¢RQrE.  
 

eg 39  Evaluate ��� ]�?@#<@#£@�= @⁄ �� in the unit ball. 
 � � � � � ]®=� %G G ρ%EQR�«����d�« � "G

! 	�] L 1� . 
 

eg 40  Find the volume bounded by the cone t � c% 0 �% and the sphere % 0 �% 0 t% � t. 
 
 
 
 
 
 
 
Since �% � � cos « from the sphere, 0 � � � cos «, and	� cos« � c�� EQR�«� CDE�d��% 0 �� EQR�«� EQR�d��% � � EQR�«�, we can say that the cone goes from, 0 � « � G

".  

 

So � � � � �% EQR�«����d�« � %G
!

�*| %G G "⁄ � �CDE «�!G "⁄ EQR�«��« � G
, . 

 
Homework 16.5 

 
1. Describe the solid given by: 

a)  0 § d § N 2,			� § t § 2;⁄   Ans:  The first octant section of the cone c% 0 �% � t and the plane z = 2. 
b)  0 § � § 3, N 2 § « § N;⁄   Ans: The bottom half of the sphere of radius 3. 
c)  0 § « § N 4, � § 2;⁄    Ans: A snow cone 

 
2. Find the coordinate of the point ��, «, d� � �√2, 	N 4⁄ , N 2⁄ �  
a)  in the cylindrical ��, d, t� coordinate systems.     Ans: f�1, N 2, 1�k⁄  
b)  in the Cartesian (x, y, z) coordinate systems.     Ans: [(0, 1, 1)] 

 
3. Change to the other two coordinate system and sketch 
a)  rsR « � 1.    Ans: f% 0 �% � t%; 	�% � t%	CDR]k 
b)  � � 2 CDE�d�.    Ans:  % 0 �% � 2; 	� EQR�«� � 2 CDE�d�	C�lQR�]�k 

 
4. Express � EQR�«� � 2 EQR�d� in rectangular coordinates and sketch the graph. 
Ans:  [cylinder x2 + (y – 1)2 = 1] 

 
5. Express � � 2 sec�d� in rectangular and spherical coordinates. 
Ans: f � 2; 	� sin« cos d � 2k 

 
6. Express � � 2 E]C�«� in rectangular and cylindrical coordinates.  Ans: [z = 2] 

 
7. Describe the surface � � CDE «.  Find its distinctive points.  (If the surface is a paraboloid, find its 

vertex; if a cylinder, find its radius; if a sphere, its center and radius etc.) Ans: sphere, r = ½, c:(0,0,1/2) 
 

8. Change CDr « � 1 to the cylindrical and Cartesian coordinates systems. 



Ans: �t = �; t = c% + �%	inverted	cone	] 
 

9. Calculate the volume of a sphere of radius R (a) by using cylindrical coordinates and (b) by using 

spherical coordinates.   Ans: 34

3
Rπ . 

10. Evaluate z dx dy dz
V∫∫∫  with  V = {(x, y, z): 3 ≤ z ≤   25– x2 – y2 }. Ans: 64π . 

11. Use cylindrical coordinates to evaluate 34
V

z dx dy dz∫ ∫ ∫  where V is the solid bounded by the cone 

2 2z x y= + and the plane z=1.   Ans: 2π/3 

 

12. (a)
  

zr3

r sinθ + 4
dz dr dθ

–r2

4
∫0

2
∫0

π / 2
∫  is given in cylindrical coordinates.  Rewrite the integral in 

rectangular coordinates.   Ans: (a)
( )2

2 2

2 2
2 4 4

0 0 ( ) 4

x

x y

z x y
dx dy dz

y

−

− +

+

+∫ ∫ ∫   

 

13. Use spherical coordinates to evaluate 2

V
z dx dy dz∫ ∫ ∫  where V is the quarter upper unit sphere centered 

at the origin with y ≥ 0 and z ≥ 0.  Ans: π/15 
 

14. 
  

ρ5 cosθ sin2 φ dρ dφ dθ
0

1
∫3π/4

π
∫0

π
∫   is given in spherical coordinates.  Express the integral in 

rectangular coordinates.   Ans: 
2 2 2

2 2

1 1 2 2 2

1 0 1 ( )
( )

x x y

x y
x x y z dz dy dx

− − +

− − − +
+ +∫ ∫ ∫ ;   

15. The integral 
25 25 2

0 0 0
sin

r
r dz dr d

π
θ θ

−

∫ ∫ ∫  is in cylindrical coordinates.  Express it as iterated integrals 

in spherical coordinates.   Ans: 
/ 2 5 4 3

0 0 0
sin ( )sin( )d d d

π π
ρ φ θ ρ φ θ∫ ∫ ∫ ; 

 
 
  



16.7  Change of Variables in a Multiple Integral (Jacobians) 
 

Let f = f (x) and x = x (u). � �()� = � �((¢)) �?�¤¤��°¤��°?��?�� �¢	where	 �?�¤ is the Jacobian of the transformation 

in ~�. 
 

eg 41  If � � ]%?#� and ¢ � 2 0 1.		 � ]%?#�� � � ]¤¤�!¤��?��?� �?
�¤ �¢ �, � ]¤¤�!¤�� �

%�¢ � �=^�
%  where 

�?
�¤ � �

% is 

the called the Jacobian of the transformation. 
 
Transformation of Regions in ±² 
 
A change of variables for double integrals is given by the transformation T from the u-v plane to the x-y plane 
where T (u, v) = (x, y) where x = g (u, v) and y = h (u, v).  Let’s assume that T is a C1 transformation, this is that 
g and h have continuous first partial derivative.  If T (ui, vi) = (xi, yi), the points (xi, yi) are called the image 
points of the points (ui, vi) under the transformation T.  Let S be the region of all (ui, vi), if T transforms S into a 
region R in the x-y plane, R is called the image of S.  If no two points in S have the same image, the 
transformation T is called one-to-one.  If T is a one to one transformation, then it will have an inverse 
transformation T-1 that will transform points (xi, yi) into points (ui, vi), or (ui, vi) = T-1 (xi, yi). 
 
 
 
 
 
 
 
 
 
eg 42  Draw in the x-y plane image of S : {(u, v)| 0 ≤ u ≤ 3, 0 ≤ v ≤ 2} under the transformation 
 
T = {x = 2u + 3v; y = u – v}. 
 
If we consider the positively oriented curve that enclose S, the line segments of the vertices of the rectangle are 
(0, 0), (3, 0), (3, 2), (0, 2) back to (0, 0).  These four line segments in the u-v plane will map the region S to the 
region R in the x-y plane given by the line segments with vertices (0, 0), (6, 3), (12, 1), (6 – 1) back to (0, 0), 
with a cw orientation, under the transformation T. 
Since the transformation is Affine (linear), the lines segments of the rectangle will transform into line segments. 
 
eg 43  Draw in the x-y plane the image of ³ ∶ µ��, d�|0 § � § 2,0 § d § N 2¶⁄  under the non-Affine 
transformation · � µ � � CDE�d�; � � � EQR�d�¶. 
 
The line segments of the vertices of the rectangle of S are: 

�� ∶ 0 → 2, d � 0� 						 	→̧ 	 � ∶ 0 → 2, � � 0� line segment 

�� � 2, d ∶ 0 → N 2� 		 →̧⁄ 	� ∶ 2 CDE d		� � 2 EQR d�	quarter	circle	CCº	d ∶ 0 → N 2⁄   

�� ∶ 2 → 0, d � N 2� 		 →̧⁄ 	� � 0, � ∶ 2 → 0�	line	segment  
�� � 0; 		d ∶ 	 N 2 → 0� 	→̧	� � 0, � � 0�	point⁄   
 
 



eg 44  Find the image of S : {(u, v)| 0 ≤ u ≤ 1, 0 ≤ v ≤ 1} under the transformation the non-Affine transformation  
 
T = {x = u2 – v2; y = 2uv}. 
 
The line segments of the vertices of the rectangle of S are: (¢ ∶ 0 → 1, P = 0) 	 →̧ 			 ( = ¢%,			� = 0)	line	segment	 ∶ 0 → 1  (¢ = 1, P ∶ 0 → 1) 	→̧		( = 1 − P%, � = 2P)	 = 1 − <@" , (, �): (1,0) → (0,2)  (¢ ∶ 1 → 0, P = 1) 	→̧ 		 ( = ¢% − 1, � = 2¢) = <@" − 1, (, �): (0,2) → (−1,0)  
(¢ = 0; 		P ∶ 1 → 0) 	→̧ 		 ( = −P%, � = 0)	line	segment	 ∶ 	−1 → 0  
 
 
 
 
 
 
Jacobians in ±²  
 
Let x = x (u, v) and y = y (u, v). 
 � � �(, �)��� = � � �B(¢, P), �(¢, P)F|	½?<¤��°¤��°���°���°?��?��<��<�� |�¢�P where ½?< = ¾(?,<)¾(¤,�) = |<¿?¿ 		 |<À?À  is the Jacobian of the transformation in ~% and |Jxy|dudv is the element of area of the 

transformation.  If the transformation is Affine, the Jacobian is a constant. 
 
eg 45  Find the Jacobian in polar coordinates 
 

Since 	 = � cos(d); � = �EQR(d), ½?< = ¾(?,<)¾(�,p) = |<Á?Á 		 | = |YZ[pWXYp<�?� 		 | = ���*|p^�|}�p  . 

The element of area dxdy in polar coordinates will be ����d. 
 

Let x = x (u, v, w); y = y (u, v, w) and z = z (u, v, w) � � � �(, �)��� =?��?��<��<��<��<��   

� � � �B(¢, P, º), �(¢, P, º), t(¢, P, º)F|½?<£¤��°¤��°���°���°Â��°Â��° |�¢�P�º where 

½?<£ = ¾(?,<,£)¾(¤,�,Â) = ÃÄ¤ Ä� ÄÂÅ¤ Å� ÅÂÆ¤ Æ� ÆÂÃ is the Jacobian of the transformation in ~!. 

 
eg 46  Find the Jacobian in spherical coordinates 
 
Since  = � EQR(«) CDE(d); � = � EQR(«) EQR(d); t = � CDE(«), 
½?<£ = Ç(, �, t)Ç(�, d, «) = ÈÄ� Äp ÄÅ� Åp ÅÆ� Æp ÆÈ = 

 



ÈEQR(«) CDE(d) −� EQR(«) EQR(d) � CDE(«) CDE(d)EQR(«) EQR(d) � EQR(«) CDE(d) � CDE(«) EQR(d)CDE(«) 0 −� EQR(«) È = −�% EQR(«) . 
The element of area dxdydz in spherical coordinates will be |½?<£|���d�« � �% EQR�«����d�«  
Integration Under Transformation in ±² 
 

eg 47  Evaluate ��� 	c% 0 �%�� where R is the cylinder x2 + y2 = 1 using the transformation non-affine 
transformation	· � µ � �CDE�d�; � = �EQR(d)}. 
 � � � É¾(?,<)¾(�,p)É� %G ���d.  Since 

¾(?,<)¾(�,p) = É� p�� �pÉ = ÉCDE d −� EQR dEQR d � CDE d É = �, 

 � � �� %G É¾(?,<)¾(�,p)É ���d = � � �	����d = %G!� %G . 

 
eg 48  Evaluate ��� 	( + �)��� where R is the polygon with vertices (0, 0), (2, 3), (5, 1), (3, – 2) using the 
Affine transformation T = {x = 2u + 3v; y = 3u – 2v}. 
 ��� 	( + �)��� = ��Ê 	(5¢ + P) É¾(?,<)¾(¤,�)É �¢�P	where	 ¾(?,<)¾(¤,�) = É¤ ��¤ �� É = É2 33 −2É = −13. 

 
To find the limits of integration, we need to find the region S under the transformation T.  To do that, it is easier 
if we find the inverse transformation T-1. 

By Cramer’s Rule, T = {x = 2u + 3v; y = 3u – 2v} becomes ·^� = {¢ = %?#!<�! ; � = !?^%<�! }. 
 
The line segments of the polygon (0, 0), (2, 3), (5, 1), (3, - 2) back to (0, 0) in the x-y are transformed to (0, 0), 
(1, 0), (1, 1), (0, 1) back to (0, 0) in the u-v.  This is the square S : {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. 

So the integral becomes	� � (5¢ + P)13	�¢�P = 39� � . 
 

eg 49  Find ½¤� = ¾(¤,�)¾(?,<) for the previous problem. 

 ¾(¤,�)¾(?,<) = É¢? ¢<P? P< É = ��!@ É2 33 −2É = − ��! .  It can be shown that the Jacobians of Affine transformations and its 

inverse transformations are reciprocal of each other.  So 
¾(?,<)¾(¤,�) = �Ë(¿,À)Ë(T,`) . 

 
eg 50  Evaluate ��� 	(% + �%) CDE(�) ��� where R is bounded by xy = 3, xy = – 3, x2 – y2 = 1 and 
x2 – y2 = 9. 
 
 
 
 
 
In this case the transformation is not given, but if we use the transformation T = {u = xy; v = x2 – y2}, the region 
of integration will be the rectangle – 3 ≤ u ≤ 3; 1 ≤ v ≤ 9. 
 

The integral ��� 	(% + �%) CDE(�) ��� = � � (% + �%)CDE	(¢) É¾(?,<)¾(¤,�)É!̂!�� �¢�P.  



 

Since x and y are not expressed in terms of u and v we cannot find 
¾(?,<)¾(¤,�) directly. 

 

Since 
¾(?,<)¾(¤,�) = �Ë(¿,À)Ë(T,`)  also holds for non-Affine transformations, we can find 

½¤� = É¢? ¢<P? P< É = É � 2 −2�É = −2(% + �%). 
 

The integral becomes	� � (% + �%)CDE	(¢) É ^�%(?@#<@)É!̂!�� �¢�P.= � � CDE(¢) �%�¢�P = 8EQR	(3)!̂!��  . 

 

eg 51 Evaluate ��� 	a?^<?#<b ��� where R is bounded by x – y = 0, x – y = 1, x + y = 1 and x + y = 3. 

 
 
 
 
 
If we use the transformation T = {u = x – y; v = x + y}, the region of integration will be 0 ≤ u ≤ 1; 1 ≤ v ≤ 3. 
 

The integral ��� a?^<?#<b��� = � � ¤� É¾(?,<)¾(¤,�)É� !� �¢�P. 

 

Since	¾(?,<)¾(¤,�) = �Ë(¿,À)Ë(T,`) , ½¤� = É¢? ¢<P? P< É = É1 −11 1 É = 2, so the integral becomes � � ¤� �%� !� �¢�P = +�	(!)"   

 
eg 52  Evaluate ��� 	�	��� where R is bounded by y2 = 4x + 4, y2 = – 4x + 4, y ≥ 0, under the transformation  
T = {x = u2 – v2; y = 2uv}. 
 
 
 
 
 
 
The condition y ≥ 0 implies that if y = 0, u = 0 or v = 0, and if y > 0, uv > 0 or uv < 0. 
 
Since y2 = 4x + 4 is the half parabola to the left of the region and y2 = – 4x + 4 is the half parabola to the right of 
the region, x and y into the left parabola gives 
 (2¢P)% = 4(¢% − P%) + 4	D�	¢P = ¢% − P% + 1	with	 Ì ¢ = 0 ⟶ P = ±1				P = 0 → no	solution , 

 
and x and y into the left parabola gives (2uv)2 = – 4 (u2 – v2) + 4 or uv = v2 – u2 + 1 with Ì¢ = 0 → RD	EDl¢rQDRP = 0 → ¢ = ±	1								 giving the region of integration 0 ≤ u ≤ 1; 0 ≤ v ≤ 1. 

 

The integral then becomes ��� 	�	��� = � � 2¢P É¾(?,<)¾(¤,�)É� � �¢�P = � � 2¢P4(¢% + P%)�¢�P = 2� � ,  

where 
¾(?,<)¾(¤,�) = 4(¢% + P%). 



Homework 16.7 
 
 

1. Draw in an xy-plane the image of the four squares in the figure below under the affine transformation x 
= 1 + 2u = v, y = 2 – u + 2v. 

 
 

2. Find an affine transformation T : x = a1u + b1v + c1, y = a2u + b2v + c2 that maps the square with corners 
˜ O = (0, 0),  ˜ A  = (1, 0), ˜ B  = (0, 1) and ̃  C  = (1, 1) in a uv-plane into the parallelogram in the figure 

below.  (b) What is the Jacobian of the transformation of part (a)?  (c) Find the inverse to the 
transformation of part (a).  (d) What is the Jacobian of the inverse transformation? 

 
 Ans: 3 , 2 ; 5;(2 ) / 5; 1/ 5x u v y u v x y= − + = − − + −  

 
3. The figures below show a region ˜ R  in a uv-plane and image R under the affine transformation x = u + v, 

y = u – v + 2.  Use this transformation to convert 
x – y

x + yR∫  dx+ dy∫  into an integral with respect to u 

and v over ˜ R . Ans: 
2 2

2 2R

v
du dv

u

−
+∫∫ ɶ  

 

 
 

 
 

  
 
 
 
 
 



4. The figures below show a region ˜ R  in a uv-plane and its image R under the transformation x = 3/u, y = 

4v1/3 – 3.  Use this transformation to convert 
  

x y+ 3( )
R∫  dx dy∫  into an integral with respect to u and v 

over ˜ R .  Ans: 3 1/348
R
u v du dv− −

∫∫ ɶ  

 

 
Figure 5 

 
Figure 6 

 
 

5. What is the Jacobian of the affine transformation x = u +2v + 3w, y = 4u – 5v, z = 6v + 2w?  (b) Suppose 
that a solid ̃  V  in uvw-space has volume 100 cubic meters.  What is the volume of its inverse under the 
transformation of part (a)? 46; 4600m3. 

 
 

6. Draw in an xy-plane the image under the affine transformation x = 2u + 5v, y = –2u + 2v of the pentagon 
in the figure below.  

 
7. Find the values of the integrals by making affine changes of variables to obtain integrals over boxes with 

sides parallel to the coordinate planes: 2

–
 

1 ( 2 )V

x y z
dx dy dz

y z

+
+ +∫ ∫ ∫ ,  

with V = {(x, y, z): 0 ≤ x + y – z ≤ 2, 0 ≤ x – y + z ≤ 3, 0 ≤ y + 2z ≤ 4  Ans; Arctan(4) 
 
 

8. Find the values of the integrals by making affine changes of variables to obtain integrals over boxes with 

sides parallel to the coordinate planes: 
  

x2 – y2( )V∫ dx dy dz∫∫ ,  

with V = {(x, y, z): 1 ≤ x + y ≤ 2, 3 ≤ x – y ≤ 4, 4 ≤ x + y + z ≤ 5. Ans: 21/8 
 
 


