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Optimization:  Local and Global Extrema 
 

Functions of several variables, like functions of one variable, have local and global extrema.  A local 
extrema is the point where the function takes on the largest or smallest value in a small region around 
the point.  Global extrema are the largest or smallest value anywhere in the domain under consideration. 
 
15.1 Local Extrema 
 
2-Space 
Consider the function y = f (x).  The critical value x0 of the function will be found when ��(x0) = 0 or  
��(x0) is undefined.  If the critical point (x0, f (x0)) is a local extrema, ��(x0) = 0.  Not all critical points 
are local extrema. 
 
We can check if a critical point is a local extrema using the First Derivative Test.  If the derivative 
changes signs across a critical point, that critical point is a local extrema. 
 
f (x) = x3 does not have a local extremum at the critical point (0,0) since the derivative does not change 
sign across that point. 
 
Sometimes we can use the Second Derivative Test to find local extrema in a function. 
 
Using this test, a critical point is a local minimum (the curve is concave up) if the second derivative is 
positive at that point and a local maximum (the curve is concave down) if the second derivative is 
negative at that point.  The test fails if the second derivative is zero. 
 
Points where the second derivative is zero are considered inflection points if concavity changes across 
that point.  Not all points where the second derivative is zero are inflection points.  f (x) = x3 has an 
inflection point at (0,0) since the concavity changes across it.  f (x) = x4 has a zero second derivative at   
x = 0, but the point (0,0) is not an inflection point. 
 
3-Space 
Functions of several variables, like functions of one variable, have local and global extrema.  Consider 
the function z = f (x,y).  The critical (stationary) points of the function will be found where fx (x,y) = 
fy (x,y) = 0.  Not all critical points are local extrema. 
 
If F (x, y) has a local extremum at the point (a, b), then fx (a, b) and fy (a, b) = 0. 
This implies that ∇��� �(�, 
) =  0��, so the tangent plane at that point is horizontal. 
 
eg 1 Consider z = x2 + y2 – 2x – 6y + 14. 
The critical points will be found at fx = 2x – 2 = 0 or fy = 2y – 6 = 0.  The function has a critical point at 
(1, 3).  By completing the square, z = 4 + (x – 1)2 + (y – 3)2. 
 
This is a paraboloid that opens up with vertex at (1, 3, 4).  So this point is a local minimum. 
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To classify critical points we need a Second Derivative Test. 

 
Let z = f (x, y) be continuous at (a, b), fx (a, b) = fy (a, b) = 0 and lets define the Hessian determinant as  

D(x,y) = ���� ���
��� ����. 

If D(a, b)  > 0 and ��� (a, b) > 0 (or ��� (a, b) > 0), then f (a, b) is a local minimum. 
If D (a, b) > 0 and ��� (a, b) < 0 (or ��� (a, b) < 0), then f (a, b) is a local maximum. 
If D(a, b)  < 0, then f (a, b) is a saddle point. 
If D(a, b) = 0 the test fails. In this case, further investigation is needed. 
 
eg 2a Consider z = x4 + y4 – 4xy + 1. 
The critical points will be found where fx = 4x3 – 4y = 0 and fy = 4y3 – 4x = 0. 
Since the roots are x = 0, 1, −1, the critical points are (0, 0), (1, 1) and (−1, −1). 
Since ��� = 12x2, ��� = - 4 and ��� = 12y

2, D(x,y) = 144x2y2 – 16. 
Since D(0, 0) = − 16 < 0, (0, 0, 1) is saddle point.  Since D (1, 1) = 128 > 0 with ��� (1, 1) = 12 > 0 and 
D(−1, −1) = 128  > 0 with ��� (−1, −1) = 12 > 0, the points (1, 1, −1) and (−1, −1, −1) are local 
minimums. 
 
eg 2b. Consider z = x3 + y3 – 3x–12y + 1. 
The critical points will be found where fx = 3x2 – 3= 0 when x = ±1 and fy = 3y2 – 12 = 0 when y = ± 2. 
The critical points are (1, 2), (−1, 2), (1, −2) and (−1, −2). 
Since ��� = 6x, ��� = 0 and ��� = 6y, D(x,y)  = 36xy. 
Since D(1,2) = 72 > 0, and ��� >0, the point (1,2, −17) is a relative minimum.  
Since D(−1, −2) = 72 > 0, and ��� <0, the point (−1, −2,19) is a relative maximum.  
Since D(−1,2) = 72 < 0, the point (−1,2, −13) is a saddle point.  
Since D(1,−2) = 72 < 0, the point (1, −2,15) is a saddle point.  
 
 
eg 3 Consider z = x2y2. 
 
The critical points will be found where fx = 2xy2 = 0 and fy = 2x2y = 0.  That is every point along the x 
and y axis.  Since ��� = 2y2, fxy = 4xy and fyy = 2x2, D(x,y) = 4x2y2 – 16x2y2 = 0 at any point on the x or y 
axis.  In this case the test fails.  Since x2y2 ≥ 0, we can conclude that we will find the minimum along 
the axis. 
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Homework 5.1 
 

1. Classify the extreme values for f(x, y)=4x2ey−2x4−e 4y 
Ans: Relative max at (-1,0) and (1, 0)  
 

2. Find the extreme values for f(x, y) = (y2)/3 – (x2)/4 
Ans: Saddle point a (0,0) 

3. Classify the two critical points( , , )x y z for 2 3( , ) 6 3 2f x y xy x y= − − . 
Ans: Saddle point at (0,0,0), Relative min at (1,1,1) 

4. Classify the critical points of the function f(x, y) = –x4–y4–4xy +1. 
Ans: Saddle point at (0,0), relative max at (1, –1) and (–1,1) 
 

5. Find the extreme values for f(x, y) = x3–3x2y+6y2+24y 
Ans: Saddle points at (–2, –1) and (4,2), relative min at (0, –2) 
 

6. Find the extreme values for f(x, y) = xsiny  
Ans: Saddle points at (0, nπ) 
 

7. Find a,b,and c such that f(x, y) =  x2+ax+y2+by+c has a local minimum value of −10 at (−1,−2) 
Ans: a=2,b=4,and c=5 

 
 
 
15.2 Optimization:  Local and Global Extrema 
 
eg 4  Find the point closest to the origin on the plane 2x + y – z = 5. 
 
We have minimized the square of the distance from the origin D = x2 + y2 + z2 from the plane 2x + y – z 
= 5.  If we substitute z of the plane in D, we have 
D = x2 + y2 + (2x + y – 5)2.  Dx = 2x + 4(2x + y – 5) = 0 and  
Dy = 2y + 2(2x + y – 5) = 0 gives the system of equations 5x  + 2y – 10 = 0, 

2x + 2y – 5 = 0.  From this we get the critical point ��
� , �

��.  Since ��� = 10, ��� = 4 and ��� = 4, D = 

10(4) – (4)2 = 24 > 0 and  ���= 10 > 0, the critical point is a minimum.  The z coordinate of the point is 

the point will be z = 2 �
� + 

�
� - 5 = - 

�
� so the closest point is (

�
� , �

� , − �
� ), and the minimum distance is 

���
���  ��

��� +  �− �
���  = 

�√�
�  . 

 
Note: If we use the formula we derived with vectors, we find that the minimum distance from the point 
(0,0,0) to the plane 2x + y – z = 5 is 

d = 
| �!"#�!" $%!" &|

√ '" #'" $' =  |�(()")(()*)(()*�|
√�'")'")' =  |*�|

√�  = 
�√�

�  units, where <a, b, c> = <2,1,-1> is the normal to 

the plane. 
 
 
eg 5 Find the distance from the point (2, - 3, 4) to the plane x + 2y + 2z = 13. 
 
Since the distance from the point (x, y, z) to (2, - 3, 4) is given by  
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d2 = (x – 2)2 + (y + 3)2 + (z – 4)2 and z = 
)�*�*��

� , into d2 we obtain  

d2 = (x – 2)2 + (y + 3)2 + (
�*�*��

� )2.  Critical point will be given where  

+�� = 
��
� +  , − )�

�  = 0 and +�� = x + 4y + 1 = 0 this is at (3, - 1). 

Since +���  = 
�
�; +��� = 4 and +���  = 1, D = 10 – 1 = 9 >0, and +��� > 0, (3, - 1) is a local minimum.  The 

minimum distance will be  d = �(3 − 2)� + (− 1 + 3)� + ��*�*�(*))
� ��  = 3 units. 

 
If we use the formula we derived with vectors, we find that the minimum distance from the point   

(2, - 3, 4) to the plane x + 2y + 2z = 13 is d = 
| �!"#�!" $%!" &|

√ '" #'" $' =  |)(�)"�(*�)"�(/)*)�|
√)'"�'"�' =  |*0|

�  = 3 units, 

where <a, b, c> = <1,2,2> is the normal to the plane 
 
eg 6 The revenue obtained by selling x units of product A and y units of product B is R(x, y) = 8x + 10y, 
and the cost in producing x units of product A and y units of product B is C(x, y) = .001(x2 + xy + y2) + 
10,000.  Find the production level that maximizes profit P (x, y) and the maximum profit. 
 
Since P (x, y) = R(x, y) – C(x, y) = 8x + 10y – .001(x2 + xy + y2) – 10,000. 
Px = 8 - .001(2x + y) = 0 and Py = 10 - .001 (x + 2y) = 0, we obtain a critical point at x = 2000, y = 4000.  
Since Pxx = Pyy  = -.002 and Pxy =  - .001.  D = 3 x 10*� > 0.  Since 1�� < 0, we have a relative maximum 
at that point.   The maximum profit will be at the point (2000, 4000) and the maximum profit will be 
$18,000. 
 
eg 7 An open rectangular box has volume 32 cm3.  What is the length of the edges giving the minimum 
surface area? 
 
Let an open box of height z have a volume V = xyz = 32.  The surface area will be  
S = xy + 2yz+2xz.  If we substitute z = 32/(xy), we obtain  
S = xy + 64/x + 64/y.  If we solve Sx = y – 64/2� = 0 and Sy = x – 64/y2 = 0, we obtain x = 4, y = 4.  Since 
Sxx = 128/x3, Syy = 128/y3 and Sxy = 1, D = (2) (2) – (1)2 = 3, and Sxx = 2 > 0, we have a minimum at  (4, 
4, 2).  The length of the edges that gives the minimum surface area is 4 x 4 x 2 cm. 
 
eg 8 A rectangular box without a top is made from 12cm2 of cardboard.  Find the dimensions that 
maximize the volume. 
 
If V = xyz, 12 = 2xz + 2yz + xy, where xy is the area of the bottom of the box. 

Since z = 
)�*��
�(�"�), V = xy

)�*��
�(�"�) = 

)���*�'�'
�(�"�) .  The critical points will be found where Vx = 

�'3)�*���*�'4
�(�"�)'  

 = 0 and V y = 
�'()�*���*�')

�(�"�)'  = 0.  This will occur when x = 0 and y = 0 or 12 – 2xy – x2 = 0 and  

12 – 2xy – y2=0 
 
The second system gives x2 = y2 or y = x.  Since y = x into either of the derivative gives x = y = 2,  
(2, 2, 1) will be the critical point.  The other critical point (0, 0, 0) will give no volume.  It can be shown 
that D (2, 2) is a local maximum, so the dimensions of the box with maximum volume will be x = 2, y  
= 2 and z = 1. 
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Homework 5.2 
 

1. Find the six critical points of g(x, y) = x3 + y4 – 36y2 – 12x. 
Ans: (2,0), (-2,0), (2, √18 ), (2- √18 ), (-2, √18 ), (-2, -√18 ) 

2. Given the plane x+2y +z −1=0, find (a) the point on the plane closest to the origin by minimizing 
the distance square, (b) the minimum distance. Check you answer in (b) with the formula. 
Ans:(a) (1/6, 1/3,1/6), (b) 1/√6 

3. Find the point on the half-hyperboloid 5 = 62� + ,� + 3 that is closest to the point (6, 4, 0). 
(Minimize the square f(x, y) of the distance between (6, 4, 0) and the point on the surface with x-
coordinate x and y-coordinate y.) Ans: (3,2,4) 

4. Find the point(s) ( , , )x y z on the surface 23 9x xy z+ + =  closest to the origin by minimizing the 
square of the distance. Check that the point gives a minimum. Ans: (2,1, ±1), D>0, fxx >0 min. 

5. Find the point(s) on the cone 5� = 2� + ,� that is closest to the point (1, 2, 0). 
Ans: (1/2, 1, ±√5/2) 

6. A rectangular box of volume 24 cubic feet is to be constructed with material that costs $1.50 per 
square foot for the sides, $2.25 per square foot for the front and back, and $3 per square foot for 
the top and bottom. (a) Give a formula for the cost C(x, y) of the box in terms of the width x and 
depth y of its base. (b) What dimensions would minimize the cost of the box? 
Ans: a) C(x, y) =72/x +108/ y + 6xy. b) 2×3× 4 

 
15.3 Constrained Optimization:  Method of Lagrange Multipliers 
 
This is a method of obtaining maximum and minimum values of a function z = f (x, y) subject to a 
constrain g(x, y) = k or w = f (x, y, z) subject to a constrain g(x, y, z) = k where k is a constant. 
 
eg 9  Find the rectangle with perimeter 12 that has the largest area. 
 
Let x and y be the length and width of the rectangle.  We want to maximize A = xy subject to the 
constrain curve P = 2x + 2y = 12.  Graphically that means to find the point where the level curves of A = 
xy intersecets the line (constrain curve) 2x + 2y = 12. 
 
 
 
 
 
 
 
At that point, the normal of the function is parallel to the normal of the constrain.  So we can say 
 ∇��� A =   ⋋ ∇��� P  where ⋋ is a constant.  So < y, x > = ⋋ < 2, 2 > or x = ⋋2, y = ⋋2.  There are two ways to 
solve Lagrange Multipliers problems.  We can eliminate the multiplier ⋋ from the equations or we can 
solve x and y in terms of ⋋, substitute in the constrain to obtain an equation in ⋋.  If we eliminate ⋋, we 
obtain x = y. 
 
If we plug into the constrain 2x + 2y = 12 we obtain x = y = 3 with an area A = 9.  The point (3,3,9) is an 
extremum in the constrain, and we can see that any (x, y) that satisfies the extrema will give a smaller 
area.  Therefore, the rectangle with the largest area is the square with sides 3. 
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In general, the method finds maximums and minimums of a function f under a constrain g, by solving 
the equations ∇��� f = ⋋ ∇��� g and the constrain. 
 
eg 10 Find the maximum and minimum values of the plane f (x, y) = 4x + y – 2 under the constrain x2 + 
2y2 = 66. 
 
By the Lagrange Multipliers Method we have 4 = ⋋ 2x and 1 = ⋋4y.  If we substitute x and y into the 

constrain we obtain ��
⋋��

 + 2� )
/⋋��

 = 66 or ⋋ = ± )
/ .  For ⋋ = ± 

)
/ we obtain the points (8, 1)  

and ( - 8, -1).  Since f (8, 1) = 31 and f (- 8, - 1) = - 35, (8, 1, 31) is the maximum point and (- 8, - 1 – 35) 
is the minimum point under the constrain. 
 
Another way: 
4 =  ⋋ 2x and 1 = ⋋4y gives that x = 8y by multiplying the fist equation by 2, solving by ⋋4 and 
equating.  Into the constrain, we obtain 64y2 + 2y = 66 0r y = ± 1 and x = ± 8.  
The points will be (8, 1) and ( - 8, -1) as before. 
 
eg 11 Find the maximum and minimum values of the surface f (x, y) = x2 + 2x + y2 under the constrain x2 
+ y2 ≤ 4. 
 
Since we are inside a cylinder of radius 4, and the surface is not a plane, we need to check for extrema at 
the critical points and the boundary points. 
 
By the Lagrange Multipliers Method, we have 2x + 2 = ⋋ 2x and 2y = ⋋2y.  The first equation cannot be 
satisfied for any value of ⋋.  The second equation gives us ⋋ = 1, but this value does not satisfy the first 
equation.  The second equation also tell us y = 0.  If we substitute y = 0 into x2 = y2 = 4, we obtain x = ± 
2.  The constrain has the points (2, 0) and (- 2, 0).  Since fx = 2x + 2 = 0 gives x = - 1 and fy = 2y = 0 
gives y = 0, the point (- 1, 0) is inside the cylinder and should be considered.  Since f (2, 0) = 6, f (- 2, 0) 
= 2 and f (- 1, 0) = - 1, (2, 0, 6) is the maximum point and (- 1, 0, - 1) is the minimum point. 
 
Meaning of ⋋: 
 
Consider the function f (x, y) = x2/3y1/3 under the constrain x + y = 6. 

By the Langrange Multipliers Method, we have 
�
� 2*)/�,)/� = ⋋ and )� 2�/�,*�/� = ⋋. 

If we eliminate ⋋, we obtain x = 2y.  If we substitute into the constrain, we obtain x = 4, y = 2 with  
f (4, 2) = 2*22/3 and ⋋ = 22/.3 /3 
 
Consider the same function under the constrain x + y = 9. 

By the Lagrange Multipliers Method, we have 
�
� 2)/�y1/3 = ⋋ and 

)
� 2�/�,*�/� = ⋋. 

If we eliminate ⋋, we obtain x = 2y.  If we substitute into the constrain, we obtain x = 6, y = 3 with f  

(6, 3) = 3*2�/� and ⋋ = 22/3 /3.  If we compute 
;<
;$ , we obtain 

;<
;$  = 

�∗�'/>*�∗�'/>
0*� = 22/3 /3 = ⋋.  We can 

say that the change in the function by the change in the constrain is c. 
Proof: 
Since x0 = x0 (c) and y0 = y0 (c) both depend on the value of c, by chain rule 1, 
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?<
?$ = 

?<
?@A

 &�A
&$ + ?<

?BA
 &�A

&$  at the critical point we have fx = ⋋ C� and fy = ⋋ C� so 
?<
?$  = ⋋ D ?E

?@A
 &�A

&$  +
 ?F
?BA

 &�A
&$ G = ⋋ ?E

?$ =⋋ since g (x0, y0) = c and 
?E
?$ = 1. 

 
We can conclude that ⋋ represents how the function changes when the value of the constrain changes. 
The Lagrangian Function: 
 
Constrain optimization problems where the function f (x, y) under the constrain g(x, y) = c can be solved 
by the Lagrangian Function 
ℒ (2, ,,⋋) = f (x, y) - ⋋ (C(2, ,) −  I).  If (x0, y0) is an extreme point of f (x, y), subject to the constrain 
g(x, y) = c, and ⋋0 is a corresponding Lagrange multiplier, then at the point (x0, y0, ⋋0) we have 

 
?ℒ
?� =  ?ℒ

?� =  ?ℒ
?⋋ = 0 

 
eg 12 A rectangular box without a top is made from 12cm2 of cardboard.  Find the dimensions that 
maximize the volume. 
If f (x, y, z) = xyz is the volume of the box, and the surface area 2xz + 2yz + xy = 12 is the constrain  
g(x, y, z) = 12, where xy is the area of the bottom of the box, the Lagrangian function will be given by J 
= xyz - ⋋ (2xz + 2yz + xy). 
?ℒ
?� = yz - ⋋ (2z + y) = 0 or xyz = ⋋ (2xz + xy) 
?ℒ
?� = xz - ⋋ (2z + x) = 0 or xyz = ⋋ (2yz + xy) 
?ℒ
?% = xy - ⋋ (2x +2y) = 0 or xyz = ⋋ (2xz + 2yz) 
?ℒ
?⋋ = 2xz + 2yz + xy – 12 = 0 

 
if we solve the first and second equation, we have x = y.  If we solve the first and third equation, we 
obtain x = 2z.  If we substitute these two equations in the last equation, we obtain x = y = 2, z = 1. 

 
Homework 5.3 

 
Use Lagrange Multipliers to find the maximum and/or minimum values and the points where they 
occur. 

1. The maximum and minimum of f = 2x + y for x2 + 2y2 = 18.                                                  
Ans: λ = ± 1/4, max f(4,1) = 9, min f(-4,-1) = -9 

2. The maximum and minimum of f = xy for 4x2 + 9y2 = 72. 
Ans: 0, 0, 0x yλ ≠ ≠ ≠ , max f(3,2) = 6, min f(-3,2) = f(3,-2)  -6 

3. The maximum and minimum of f = x2 + 2x + y2 for 3x2 + 2y2 = 48. 

Ans: 0λ = or y =0, max f(2 18± ) = 26, min f(-4,0) = 8 

4. The maximum and minimum of f = x2y for x2 + 8y2 = 24. 
Ans: λ = ± 1, max f( 4,1± ) = 16, min f( 4, 1± − ) = -16 

5. The minimum of f = 3x2 + y2 for y – 3x = 8. 
Ans: 4λ = , min f(-2,2)=16 

 


