Volumes of Revolution

1 Disks Method
a) $V=\pi \int_{a}^{b} f(x)^{2} d x=\pi \int_{a}^{b} y^{2} d x$ for $y=f(x)$
ex. Find the volume of the solid of revolution when the area, in the first quadrant, bounded by $\boldsymbol{y}^{2}=2 \boldsymbol{x}$ and the lines $\boldsymbol{x}=2$ and $\boldsymbol{y}=0$ is rotated about the \boldsymbol{x}-axis.
$V=\pi \int_{a}^{b} y^{2} d x=\pi \int_{0}^{2} 2 x d x=\left.\pi x^{2}\right|_{0} ^{2}=4 \pi$ Cu. units
b) $V=\pi \int_{c}^{d} g(y)^{2} d y=\pi \int_{c}^{d} x^{2} d y \quad$ for $x=g(y)$
ex. Find the volume of the solid of revolution when the area bounded by $\boldsymbol{y}=\mathbf{2} \boldsymbol{x}^{2}$ and the lines $\boldsymbol{x}=0$ and $\boldsymbol{y}=\mathbf{2}$ is rotated about the \boldsymbol{y}-axis.
$V=\pi \int_{c}^{d} x^{2} d y=\pi \int_{0}^{2} \frac{y}{2} d y=\left.\frac{\pi}{4} y^{2}\right|_{0} ^{2}=\pi \mathbf{C u}$. units

2 Washers Method
a) $V=\pi \int_{a}^{b} f(x)^{2}-g(x)^{2} d x$
ex. Find the volume of the solid of revolution when the area bounded by $g(x)=x^{2}$ and $y=x$ is rotated about the x-axis.
$V=\pi \int_{0}^{1}(x)^{2}-\left(x^{2}\right)^{2} d x=\pi\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{2 \pi}{15}$ Cu. units
b) $V=\pi \int_{c}^{d} f(y)^{2}-g(y)^{2} d y$
ex. Find the volume of the solid of revolution when the area bounded by $\boldsymbol{y}=\boldsymbol{x}^{2}$ and $y=x$ is rotated about the \boldsymbol{y}-axis.
$V=\pi \int_{0}^{1}(\sqrt{y})^{2}-(y)^{2} d y=\frac{\pi}{6}$ Cu. units

3 Cylindrical Shells

a) $V=2 \pi \int_{a}^{b} x f(x) d x=2 \pi \int_{a}^{b} x y d x$ for $y=f(x)$
ex. Find the volume of the solid of revolution when the area bounded by $\boldsymbol{y}=\boldsymbol{x}^{2}$ and $\boldsymbol{y}=\boldsymbol{x}$ is rotated about the \boldsymbol{y}-axis.
$V=2 \pi \int_{0}^{1} x\left(x-x^{2}\right) d x=\frac{\pi}{6}$ Cu. Units
b) $V=2 \pi \int_{c}^{d} y g(y) d y=2 \pi \int_{c}^{d} y x d y$ for $x=g(y)$
ex. Find the volume of the solid of revolution when the area bounded by $g(x)=x^{2}$ and $\boldsymbol{y}=\boldsymbol{x}$ is rotated about the \boldsymbol{x}-axis.
$V=2 \pi \int_{0}^{1} y(\sqrt{y}-y) d y=\frac{2 \pi}{15}$ Cu. units

Homework:

1) Find the volume of the solid generated when the area bounded by $y=x^{2}$ and the lines $y=0$ and $x=2$ is rotated about the x-axis by (a) Using disks, (b) Using shells
2) Find the volume of the solid generated when the area bounded by $\boldsymbol{y}=\sqrt{x}$ and the line $y=x$ is rotated about the y-axis by (a) Using disks, (b) Using shells
3) What is the volume of the solid generated when the region between $y=x$ and $y=3 x-x^{2}$ is rotated about the y-axis?
4) What is the volume of the solid generated when the smallest region between $y=x$ and $y=\sqrt{4-x^{2}}$ is rotated about the x-axis?
5) Find the volume of the solid obtained by rotating about the line $x=4$ the area between the curves $f(x)=x^{2}$ and $x=0$ from $y=1$ to $y=2$.

Answers:

1) D: $\pi \int_{0}^{2} x^{4} d x=32 \frac{\pi}{5}$
S: $2 \pi \int_{0}^{4} y(2-\sqrt{y}) d y=32 \frac{\pi}{5}$
2) D: $\pi \int_{0}^{1} y^{2}-y^{4} d x=2 \frac{\pi}{15}$
S: $2 \pi \int_{0}^{1} x(\sqrt{x}-x) d x=2 \frac{\pi}{15}$
3) S: $2 \pi \int_{0}^{2} x\left(\left(3 x-x^{2}\right)-x\right) d x=8 \frac{\pi}{3}$
4) D: $\pi\left[\int_{0}^{\sqrt{2}} x^{2} d x+\int_{\sqrt{2}}^{2} 4-x^{2} d x\right]=\frac{8 \pi}{3}(2-\sqrt{2}) \quad \mathbf{S}: 2 \pi \int_{0}^{\sqrt{2}} y\left(\sqrt{4-y^{2}}-y\right) d y=\frac{8 \pi}{3}(2-\sqrt{2})$
5) D: $\pi \int_{1}^{2} 4^{2}-(4-\sqrt{y})^{2} d y=\frac{\pi}{6}(64 \sqrt{2}-41)$
