Polar CoordinatesWoorksheet

1) Find all representations for the polar points

a)
$$(2, \pi/6)$$

b)
$$(2, \pi/3)$$
 with $r < 0$ and $0 \le \theta < 2\pi$.

2) Transform exactly the following points from Cartesian to polar

a)
$$(-5,0)$$

b)
$$\left(2\sqrt{2},-2\right)$$
 c) $\left(-3,3\sqrt{3}\right)$

c)
$$\left(-3,3\sqrt{3}\right)$$

3) Transform to polar coordinates the following Cartesian curves

a)
$$x^2 + y^2 = 2$$

$$b) 2x - 6y = 3$$

c)
$$y = -\sqrt{3}x$$

4) Transform the following polar curves to Cartesian Coordinates

a)
$$r = \frac{1}{2-cos(\theta)}$$

b)
$$r = \frac{1}{1-sin(\theta)}$$

b)
$$r = \frac{1}{1-sin(\theta)}$$
 c) $r = csc^2(\frac{\theta}{2})$

- 5) Sketch $r=\frac{1}{1-sin\left(\theta\right)}$ by transforming to rectangular coordinates. Label the intercepts. Check with your grapher.
- 6) Identify the following curves:

a)
$$r = 2\cos(5\theta)$$

$$\mathbf{b})\,r = \,-\,2 - 2sin(\theta)$$

a)
$$r=2\cos{(5 heta)}$$
 b) $r=-2-2sin(heta)$ c) $r=rac{1}{2cos(heta)+3sin(heta)}$

d)
$$cos(\theta) = 2sin(\theta)$$

e)
$$r = 2sec(\theta)$$

d)
$$cos(\theta) = 2sin(\theta)$$
 e) $r = 2sec(\theta)$ f) $r = -2 + 3cos(\theta)$

- 7) Find the equation of the tangent line to $r = 2\cos(\theta)$ at $\theta = \pi/6$.
- 8) Find the Arc Length of the following polar curves

a)
$$r = \sin^2\left(\frac{\theta}{2}\right) 0 \le \theta \le \pi$$

- b) the cardioid $r = 1 cos(\theta)$ $0 \le \theta \le 2\pi$, by using half angle formulas.
- 9) Find the area:
- a) inside the cardioid $r = 4 + 4\cos(\theta)$ and outside the circle r = 6.
- b) of the region common to the curves $r = cos(\theta)$ and $r = sin(\theta)$.