Infinite Sequences and Series
12.1 Infinite Sequences
An infinite sequence is a function whose domain is the set of non negative integers n.

So the infinite sequence {a,},~, = @ny; Gngi1s Qnyi2, @, Gngya. With ng also a nonnegative
integer. The a,,'s are called the terms of the sequence.

eg 1 The sequence {- 1}n 0 =1, é, 3
eg 2 The sequence {2n} -, is the sequence of all positive even integers

eg 3 The sequence {2n + 1}, is the sequence of all positive odd integers

eg 4 The sequence {cos (nm)},— o ={—1"}.2,

The limit of a sequence

The infinite sequence {an}zczn0 has the limit L i.e. ( lim a,, = L) if a,, gets arbitrarily close to L

n—oo
as n increases without bound.
This is {a, },_,, has the limit L if given any ¢>0 3 N such that |a,, — L| < ¢ for some n > N.

If {an}zozn0 has the limit L, we say the sequence converges, otherwise the sequence diverges.
All the properties of limits of functions apply to limits of sequences.

eg s T;lel n=0 J:r11 = o0; {(— 1)71:2111 }ZO:O_'HILIEO( - 1)71(7?2;11) = 0.
{n?e "}> O—»hm L=0.

Note: Eliminating a finite numbers of terms of a sequence does not affect its convergence.

eg 6 Find the following limits of sequences

lim 2% — 0; lim ¢/n = 1; lim 7+ = 1forr > 0; lim (1+2)" = 7
hmr —Ofor|r|<1 hm1+(—1)"Dlverges llm\/n—100—\/n+100—0

Monotone Sequences
Strictly Monotone Sequence
Ifa,.1 > a, or a”“ > 1, the sequence {a, } -, increases. eg. {nJrl o

an+1
Ifa,. <a, or e <, the sequence {a,, },, decreases. eg. {n}n:O

Monotone Sequence
Ifa,.1 > ayor “ > 1, the sequence {a, },-,non decreases.

an+1

Ifa, 1 < an or < 1, the sequence {a, } - ,non increases.

eg 7 {1+ 2} 11s decreasmg since (1 + —1) (1+3) = ot — 7 <0for n>1.

n+1
eg 8 {m}nzlls increasing since 7(‘7;111; /” = ("TH) > 1for n > 1.

A sequence that increases and decreases is called non monotone.
2
eg9 {2100 ; 2 = %L > 1 increases for n = 1;and %5 < 1 decreases for n > 2.

{2&)%...}



Another way to determine if a sequence is increasing or decreasing is if we can represent the
sequence with a function, we can apply the first derivative test to the function.
d In(z+2) _ 1-In(z+2)

o L N
} o118 decreasing since f'(z) = - =5~ = iy < 0 for

In(n+2)
n+2

eg 10 The sequence {
n > 1.

12.2 Series
A series is the sum of the terms of a sequence.

Finite Series
A finite series is the sum of the terms of a finite sequence.

The sequence of partial sum of the finite sequence {a;}; _, is defined as {S;. },,_; = S1,... S,
where S| = a1, S = a1+ a2, -, Sy =a1+ar+a....qa,.
S, is called the ny, partial sum of the sequence where n is the number of terms in the series.

Consider the sequence {ay }) _;. Its corresponding series will be
n

doar =ay +as + -+ + a, = 5, the ny, partial sum of the sequence
k=1

Example of a Finite Series; The Geometric Series
Consider the ny, partial sum of the Geometric Sequence {ar®~'}}_,

n
S, = Y ar*! = a+ar+ar®+-.ar" 1. S, —rS, = a — ar” so
k=1

n
S, = Yark!l = alli’" forr # 1
k=1

r

L koo 1-(-2)° _
eg 11 F1ndkz_:17( —2)".Sincer = —2anda= — 4, S5 = — & ( 1_((_3%)) ) = 5.
eg 12 Example of finite series are:
& . _ n(n+1)
Yk=14+2+-+n=——



Infinite Series
n

Since S, = Y ay, is ny, partial sum of the sequence {ay. },—;, the infinite series

k=1
o n
ar=a1+ay+--+a,+--=1mS, =lim > a; .
k=1 n—o0 n—oo k=1
If the this limit exists then the limit is the sum of the infinite series, and we say
lim Z ap = Z ap =

nooo )

Properties of Convergent Series
oo o0 o
D > (apxbp) = YarE Y by
k=1 k=1 k=1
oo o
2) Ycap=c) ay
k=1 k=1
3) Deleting a finite numbers of terms in a series will not affect its convergence.
Note:

The sum of most convergent infinite series can not be found. Here are some examples of series
whose sums can be found.

Telescoping Series

eg13zm: Z%—Lzlim > %—%—th _hml—L =1.

eg 14 Find Zﬁ —

A

Infinite Geometric Series
Since S, = a == 1s the ny, partial sum of the Geometric Sequence Will be

1-r
lim S, = lim ot~ —— . This limit will only converge for |r| < 1to %= = S the sum of the
n—oo n—oo
series.

eg 16 Suppose you want to go from point A to point B two miles away. If you first go half the
distance, then go half that distance, and so forth, so that at each stage you go half as far as you

did in the previous stage, your total distance will be 1+%+%+%+%+- =2
If we write the sum as 1+%+(%)2+(%)3+(%)4+--- = i (%)k = (1%) = 2 since thisisa
Geometric Series witha = 1 andr = l < 1. .
eg 17 li(_g)k_ = 1+_1 =6 sincea=7andr = —1/6
> = %2 1% = —1/2sincea = %Q(the first term in the series) and r = — 1/3



eg19 ). 27 = i3y = 36sincea = 12andr = 2 < 1.
k=0 3

eg 20 ];(-%)k = diverges since |-3| > 1

eg 21 Express 0.44444 as a fraction by using a geometric series

: ) 4, 4 (1
Since 0.44444 = 0.4 + 0.04 + 0.004 + - = 7 + 14 + 1005 2_) (—0) =
4 1 _ 4 -
101-5 — 97
eg 22 Find the values of = the will make 3" z* a convergent series. ﬁ; lz] < 1.

k=0

0.¢]
eg 23 Find the values of x the will make I:,f—il a convergent series.

k=1
Z oy sy :% —

= ﬁfor|%| <L 5] > 1|z > 3.

le

eg 24 A ball dropped from a height of 4m. rebound each time 75% of its previous height. Find
the total distance traveled by the ball.

The total distance will be D = 4 + 2[4(.75)+4(.75)% ---] = 4+2 24(%) = 4+2 1= = 28m
k=1

The Divergence Test (DT)
If > aj converges, then hm ar =0

k—oo

Proof: If ) aj converges then it will have a limit L .Since S,, — S,—1 = a,

n—1
lima, = 1limS, —S,.1 = lim ( Zak —Zak) =L—-L=0.

k—o0 n—oo n—00 i

The contrapositive of this statement is known as the divergence test.
If klim aj # 0,then > aj diverges.
—00

eg 25 kzl 2{“2_;1 ; klingc 2;“2_;1 = — 2 # 0 (diverges)

eg 26 ioj (%)k, lim (%)k = e* # 0 (diverges)

k=1 k—o0



eg 27 Zln(%) khm In(3) = oo # 0 (diverges)

eg28 > cos(km); klim cos(km) = DNE (diverges)
k=1 —00

eg29 > 20/nh); klim 20/k) =1 £ 0 (diverges)
k=1 —00

eg30 > cos(1/k); klim cos(1/k) =1 # 0 (diverges)
k=1 —00

12.3 The Integral Test (IT)

Let ) ay be a series with non negative terms, and let f(x) be the function that results when &
k=1
is replace by x in the formula for a . If f(z) is non increasing and continuous for x > 1, then

Z ay and fl x) dx both converge or diverge.
NOTES.

Use when f(x) is easy to integrate.
If the converges, series do not converges to the value of the integral

eg3l Y ke = [Fze**dr = lim — —Zb(b— %)4—364_2 =3
k=1

b—o0 2

converges, the series converges.

eg 32 Z k2+1 = [7%=dz = limin(b®> + 1) — In(1 + 1) = co. Since the integral

w241 b—oo

dlverges, the series diverges.

eg33 Y 1 = [“idz = limin(b) — In(1) = co. Since the integral diverges, the series

b—o0

diverges.

p-series
[ee]
Yw =
P kP 1 2

converges for p > 1, the series converges for p > 1.

[

blm T, T = ﬁ when p > 1. Since the integral
—00

eg34 > - letj=k+5= Z%convergesp>1
f=1 ) =6



NOTE: If klim ar = 0,then > a, may or may not converge.

o
eg35 > %; lim £ = 0, and the Harmonic series diverges by the Integral Test.
k=1

k—o00 k

eg36 > %; khm =5 = 0, and the p-series (p > 1)converges by the Integral Test.
k=1

Estimating the Sum of a Series (Integral Test)

0
Assume ) aj be a convergent series by the integral tests, and let f(x) be the function that
k=1

results when k is replace by z. The reminder R, is the error made when S, (the ny, partial sum)
o0

is used as an approximation of the total sum. If R, = > a is defined to be S — S, (the sum
k=n+1
after the ng, term), then f}+1f z)dr < R, < [ f(z)dx

o0

eg 37 Find the error involved to approximate Z 1 by adding the first five terms.
k=
S5 ~ 1.46361; the error R; < [.~ 1d:zz:—hmf Sdr=1=0.2

a—00

8

1~
2 ~

1

e.¢]
eg 38 How many terms of Z % are needed to obtain two-decimal place accuracy

(an error < .005)?

Since [ —dx < .0050r £ < .005s0n > 200.
201"

What this means is that Z = N 1.63995 is an approximation of Z -2 to two decimal places.
k._

Since R, =S5 — 5, if we rearrange fn+1f( z)dz <R, < [ f dx we obtain

Sp+ [T f(@)de < S < S, + [ f(z)dx

eg 39 Find the error involved to approximate » % by adding the first five terms using the
k=1

previous formula.

S+ [XL dr < S < S+ [ f(x)dz or 146361 + 1 < § < 1.46361 + L. Since Sis the

midpoint of the interval, the error is at most half the length of the interval.

SoS = > # ~ 1.64694 with error < .005. We were able to approximate » # by only
k=1 k=1
computing 5 terms instead of 200 terms of the last example.

12.4 The comparison Tests



Comparison Test (CT)
Let Y aj and ) by be series with non negative terms such that a;, < by.

If > b, converges then Y ajconverges, and if Y aj diverges then Y b, diverges.

NOTE: Use this test as a last resort. Some other tests are easier to use.

egdl > ijQ; Since k+12 < k2 and Z -> converges (p > 1), thenz
= ) (k1)

k+1 —— converges.

o0 o0 o

1. Qg 1 1 1 _1 1

egdl > 100 Since 3410 < 3F @ § 3% converges (Geo. r= 5), then ) 7410
k=1 =1 k=1

converges

eg 42 Z S 10; Since 100 for k > 3, and Z 1oko converges (Geo. r= %),

=1

2" 10

then kz_:l S5 converges.

00 00
P —dk® +a+l, q; 2k —4k? +k+1 1 1 g;
eg 43 ; 71m, Since T > % and kzlz dlverges (p < 1) then

[e.¢]
P —4k? k41 3
P Yy diverges.

eg 44 Z 2B Since X < 10 and Z 1% converges (Geo. r = 1), then
=0

9+sin(k)
Z —
k=0
Estimating Sums:

converges.

eg 45 Find the error involved to approximate Z
k=1

Z = ~ 3.51881. Since Z o Z_:lp, the remainder after 50 terms

757 by adding the first fifty terms.

k=1
Rs5) < T50 = f50 —dz = 5—10 = 0.02, where T} is the remainder of the test series.
(e}
eg 46 How many terms are needed to estimate k++1 with an error < .0005?
: — _1 o 1 k_loo 1 « S
Since Y ° g < Do B = Z kz 1 <1, = ) 77 Tofind estimate ) 5 withan
k=1 k=1 k n+1 k=n+1 k=1

error < .0005, it suffice to find Z #with an error < .0005. So R,, < f;oﬁdx < .0005 or
k=1
% < .0005 orn > 2000.This means Soy9 = 1.076 with error < .0005; or Sspp =~ 1.076.



Limit Comparison Test (LCT)

Let Y aj and ) by be series with non negative terms such that p = klim =
—00

If 0 < p < + oo, then both series converge or diverge. If p =0 or p = oo, the test fails.
NOTE: Require some skill in choosing the series Y b for comparison.

eg 47 Z G + 55 Since m is not > i,, a comparison test can not be made with
o0
1 1 k 1
k21E Ifweletay, = 9k+6andbk =1, p= klirgoa =p= hm N5 = 5 0 < p< 4 00).
B o oo
Since kzj diverges (harmonic; p = 1), PR +6 diverges.

o
eg 48 Z 5 ,}31 ; Since ,}31 isnot < &, a comparison test can not be made with
k=1
S 4 Ifwel db li — lim 10x9° _ 10
Z oF we etak_9k+1an k_9k7p_k1nc;lobk p_klnc;logk—i_l )
k _1 Ed —
o
(0 < p < 4 00). Since Z & converges (Geo. r = %), > ﬁ converges.
k=1 k=1
o~ (204K )k I ap _ (3204k\F
eg 49 kzl (m) ; A LCT with Z = will give p = 11 n = (§k_+3) =
0
ea:p(hm kln(%?jf)) = ¢!, Since Z srconverges Geo. Z (ggi’;) converges.
—1 —1
eg 50 3 +2 - Since 2 5+2k i g—i, a comparison test can not be made with
k=1
o0
k
kzl(%) Ifwe let a;, = 2% = 5k,,0—11m1+(§) = 1.

[ [S%)

) 3 5*,? converges.

(o ¢]
Since > (%)k converges (Geo. r =
k=1 k=1
12.5 The Alternating Series Test (AST) . .
+1
An alternating series is a series of the form  J( — 1) ay or > (—1) ay.

F
k k+1

Ifay > Oforall k, the series Y (—1) ap or > (—1) aj converges if

F F

a) ay 1s non increasing b) klim ap=0.
—00
e k
eg51 > (—1) % is called the alternating harmonic series.
=1

Since aj > 0 for all k£ and klim % = 0, the series converges.
—0Q

Note that the harmonic series diverges.



0 k1
eg 52 Consider ];1( -1) ]fjjq Since - é‘;ﬁr = *?Zzli';; 3 < (Ofor all k (decreasing) and
11m lfgﬁ = 0, the series converges by AST.
eg 53 Consider > (—1) l”( ). Since - l"](f) = %’;(") < Ofor all k > 3 (decreasing) and
k=3
since khm ](C ) = = 0, the series converges by AST.
Note:

If condition (b) fails, klim aj # 0, the series diverges by the divergence test.

If condition (a) fails, series of absolute values is not monotone, no conclusion can be made.
Estimation of Error in the Alternating Series Test

IfsS=>(- l)kak is the sum of an alt. series that satisfy the two condition of the AST, the
k
error in using s, to approximate the sum S is |R,,| = |S — s,| < [Snt1 — Sn| = ani1.
This means that the error of the sum after the ny, term (the reminder after n) is smaller than the
first neglected term.
00 k+1

eg 54 Consider Y =J—. Since Syp ~ 0.9015422, and |S — s109| < 7 ~ 0.00001,

k=1
S100 lies within 0.000010f the true limit S, or S lies between S and Sy,

eg 55 Find n such that |R,| < .01 forkz %
—1

Since a, = = < 01> k > 100, (a1 = i < .01), and
100 k+

since |S — s100| < a1 < .01, > % ~ 0.688172 with error < .01.
k=1

Later we will show that S = In(2). So [In(2) — s100| =~ 0.005 < .01

eg 56 Find Z is ,with an error less than 0.0005.

If we try several values of k£, 5 ~ .008; 6i ~ .001;=; ~ .000198. Since

75; 97;

k

6
S — s6| < a7y =.000198 < .0002, Z ~ .368 correct to three decimal places.

12.6 Absolute convergence and the Ratio and Root Tests
Absolute Convergence (AS) and Conditional Convergence (CC)

Let Y uj, have some positive and some negative terms. If ) |u | converges then > u

converges absolutely (in absolute value). If > uj converges but > |uj| diverges then Y uy

converges conditionally (not in Absolute value).



(‘OS

eg 57 Z costh) converge absolutely since by CT, | =

(p= 2 > 1). .
Consider the alternating series » J( — 1) aj witha; > 0.
k

0
| < # and ) # converges
k=1

if Y "aj conv.— the series conv. absolutely

J
) Conv. by AST
If the serleszk:( —1) ay if Y ay div. - the series  conv. conditionally
I

Div. by DT — Diverges

eg 58 Z( - 1) (%)k converges absolutely since » (%)k converges (Geo. | r| = % < 1);
k=1

k ) o) k
eg 59 Since Z( — 1) zconverges by AST but >+ diverges (p = 1), the series > (—1) +
k=1 k=1 k=1
converges conditionally.
k
o (-1) 00
eg 60 > —7; converges by AST since ay, is non increasing and lim — 0. But since %
=1 VF K

diverges (p = % < 1), the series converges conditionally.

eg 61 Z cos(kr) 7y converges by AST since ay, is non increasing and lim—0. But since

00 (*1)
Z TSy diverges (by comparison with Z ) , the series converges conditionally.
k=1

k+1
eg 62 Z( - 1) g]ﬁi converges by AST smceka , is non increasing and lim — 0. But since

ln( )
3]€+l

o0
diverges (by comparison with ) 3%@) , the series converges conditionally.
k=1

Alternating p-series

o
(- 1)k kl, converges conditionally for 0 < p < 1 and absolutely for p > 1
k=1
Rearranging terms of an alternating series

The terms of an absolute convergent series may be rearranged without changing the sum of the
series.

The terms of any conditional convergent series may be rearrange to diverge or to converge to
any desired sum.

: - - : 1,1 1,1 1,1 _ 1,1 1 _
Consider the alternating harmonic series 1 — 5+ 53—+ — ¢+ —5+5 -+ =5.



Later on we will show that S = In(2)
If we rearrange the terms of the series
1 17(1_ 1 1, (1 _ 1 1, (1_ 1 1

gl - _) 1 _+(_ E _) 1 _+(_ - 1_) ~ E+(71_ 1_31) _1E.1” 111 1
it st nTu-wo:(l-3tyoats—stiost) =38
If we rearrange the terms of the series th1s way

1,1 ,1_1,1,1_ 1,1,1 T, 1,1 1,1,1 1,11
l—s+sts—atsto—stutn stotw —wiuta ~ntuts o
and start adding terms, we see that after adding the positive terms, we get numbers that get closer
to 17 as k—oo, and after adding a negative term, we get numbers that get closer to 1~ as k—oo.
With this we can conclude that the sum S = 1.

+

Ratio Test for Absolute Convergence (RT)

[k 1]
[

Let Y uj be any series such that p = hm

a) the series converges absolutely if p < 1.

b) the series diverges if p > 1 or p = 00

¢) No conclusion if p = 1. (The series can converge absolutely, conditionally or diverge)
Note: Try this when u . involve factorials and &, powers

oo

eg 63 Consider > ( — 1) =r- Since p = khrn l’T(’fll‘ = < 1, the series converges absolutely.
il —00

eg 64 Consider Zkz'e k. Since p = hm ‘“‘l’zz‘ll = 00, the series diverges.
k=1

eg 65 Consider ];miﬂ Since p = 11m ‘“‘1’; lel = 0 < 1, the series converges absolutely.

eg 66 Consider kil( - 1)k 7~ Since p = hm ‘”‘;Tl = 1, the test fails.

Since kki is decreasing and hrn kgH = 0, the series converges by AST. Since
kgH > 10_k and Zlo_k diverges (harmonic p = 1), then é( -1) kfil
conditionally.

eg. Below are two series with different convergence where the ratio test fails.

kil( - 1)k% converges cond. with p = 1; kil( - 1)k% converges abs. with p = 1

Root Test (Root)
Let Y uj, be any series such that p = klim Ao
.

a) the series converges absolutely if p < 1.
b) the series diverges if p > lor p = o0

c¢) No conclusion if p = 1.

Note: Try this when u , involve ky, roots.



eg 67 Consider Z k¥ ; Since p = llm V k¥ = oo, the series Zkk diverges by the Root Test.
k=1 k=1

eg 68 Consider Z k=% Sincep = hm V k7% = 0, the series Zk converges by the Root

k=1 k=1

Test.
00 ] %

eg 69 Consider Z(l“li—]:)) Since p = hm (l"](c—]f)) = klim l",(c ) =0 < 1, the series
k=1 k—00 —00

S~ (In(k)"
S converges by the Root Test.

=k
eg 70 Consider i Since llm B~ lim & = oo, the series i B diverges
® e i = VT e = (e VT
by the Root Test
e k2 B (W)2 1 :
eg 71 Consider Z 5 Sincep = hm o = 11m ~—5— = 5 < 1, the series
k=1 k—o00

Z k—k converges by the Root Test.

12.8 Power Series
A power series is an infinite series whose terms are variables (powers of x)
o0
Sepxh = ¢y + ez + cor? + czad + -
k=0
Any power series :  a) converges forz =0 b) converges absolutely for all x.
c) converges absolutely for some radius R (radius of convergence)such that |x| < R were the
convergence at the end points of ( — R, R) ( interval of convergence) must be determined.

eg 72 For 2 st p = hrn l’Tl’;*ll‘ = klirgo |5 2| = 00, so the series converges for z = 0.
eg 73 ];Z.OO 2—]: P = klim ‘“‘l’z*‘ll hm |k+1x| = 0, so the series converges abs. forall x.

eg 74 For i (_]izklﬂ ML p = 11m “T":ll‘ = 11m | — 28+12| = 22| must converge for

|z| < 3.Whenz = $we have Z - :1“ Z kl that converges conditionally (alternating
harmonic) ; when z = — §we have Z = i% that diverges(harmonic). The radius of

k=1
convergence is R = % and the interval ( — %, %]



o0

eg 75 For Zo = il P = lﬁrn l’Tl’;*ll‘ = || must converge for || < 1. When 2z = 1we have

o0

"
k241

k (comparison with Z 5); when x = — 1 we have Z converges because

k=0 =t
the one in absolute value converges (absolutely) with radius of convergence is R = 1land
interval of convergence — 1 < x < 1.

oo k—1
eg 76 For (7\1/% Fop= hm hfz’;*‘” = |z| must converge for |z| < 1. When x = 1we have
k=1
00 k
> _(\;) that converges by AST but diverges in absolute value (p = % < 1), so it converges
k=1
conditionally ; when x = — 1we have Z NG that diverges (p = 5 < 1) with radius of

convergence is R = 1 and interval of convergence( —1,1].

[ -

. =0 |z| must converge for |x| < % When x = +we have

eg 77 For =zt p= hm =

k
k=1

Z converges (p =2 > 1) ; whenz = — 1 we have IZ converges because the one in
k=1

absolute value converges (absolutely) with radius of convergence is R = é and interval of

convergence is ( — %, %]

Power Series in (z — a)
o.¢]

Sen(@—a)* =co+ei(z—a)+ ez —a) +es(z—a)+ -
k=0

Theorem

Any power series :

a) converges for x = a

b) converges absolutely for all x.

¢) converges absolutely for some radius R (radius of convergence centered at a)such that
|z — a| < R were the convergence at the end points of (¢ — R,a + R)

(interval of convergence) must be determined.

00 k
eg 78 For >’ CL) (z—4)* , p= lim &=l — |z — 4| must converge for |z — 4| < 1or
k=0 (k+1) k—oo [l

3 < x < 5.When z = 3we have Z k 7 converges (CT w1thz 5) ; when z = 5 we have

0 k
kz_% (Ec+11))2 converges because the one in absolute value converges (absolutely) with radius of

convergence is R = 1 and interval of convergence is[3, 5].



) k+1
eg 79 For > (_1]3 (z+1D",p= hm lial — |2 4 1| must converge for |z + 1| < 1or

k|

k=1
—2<x<0.Whenz = — 2we have — Zl diverges (harmonic) ; when z = 0 we have
k=1
— Z converges conditionally (alternating harmonic) with radius of convergence is R = 1
and 1nterva1 of convergence is ( — 2, 0].
= : gl e(k+1)
eg 80 For k;) m(a: 1", p= k]ggo el = l1m | m[ = 0 < 1converges for all x

with radius of convergence is R = oo and 1nterval of convergence is ( — 00, 00).

12.9 Representation of Functions as Power Series
o0

eg. Sz =142+ 2+ 23 + - is a geometric series with r = .

k=0
If we use the RT we find that p = llm ‘7’; *|1| = 11m |7‘k+1| = |x| must converge for
|z] < 1. When x = 1we have Zl that diverges to co; when z = — 1we have Z( —1)" that

k=0 k=0
diverges without a limit. The radius of convergence is R = 1and the interval — 1 <z < 1.
This is the same result we expect from the geometric series with » = .

[o¢]
We can say Zxk:1+x+x2+x3+---:ﬁform < 1.
0 N
eg8l = =z Yaoh = Yo forlz| < 1.
k=0 k=0

eg 82 5 = Z 2k for |2?| < lor|z| < 1.

MSH

eg 83 plr_x = kfo( )" Z( DFa for x| < 1.

OO x > k l‘k’ —T
eg 84 ﬁ:%( %) %2::( 5) ]g(—l)wfor\7|<1or]:v|<2.
Theorem:

If S cn(x —a)” converges in (a — R, a + R) for some R > 0, it will define a function

f(z) =S er(z—a)* in(a— R,a+ R).Such function f has derivatives of all orders inside
k=0

the interval of convergence, and we can integrate and differentiate the series term wise with the
same interval of convergence as the one of the original series.



o0

1 d _d e R A kil b1
eg 85 (1+x)2_l_(1+:( - T;O( D"t = k;l(—l) Eakt =
S (= 1P (k+1)z* for |z| <1

k=0

B © & 22k
eg 86 tan 1(m):fl+lmgdx:ka( x) = ];)(—l)k%ﬂ—i—c
Ifweletz =0,c=0.Sotan '(z)= Y (- )k;i: for |x| < 1, where we can show that
k=0
the series converges at the end points.
eg87 In(l—z)= [Ldo= [ — S@) de= - :f:: +c75 0
k=0 k=0
X, gk S
T = — o g for =1 <z <1
k=0 k=1 o N
Ifwelety =1, In(1—1) = —In(2) = — kzl(,j or In(2) = 3 .

Note: Term-by-term differentiation might not work for other type of series.

o si s sin(klx) = klecos(klz) 4.
Z converges whlle T =)~ diverges.
k=1 = k=1

12.10 Taylor and Maclaurin Series
A function that has all orders derivatives in an interval I can be expressed as a power series on /.
Lets assume that f(z) is the sum of the power series centered at a
f(x) = ch(x—a) =c+az—a)+e@—a)l+ - Feplz—a) + -
Since f(a ) = e, f'(a) = 13 f(a) = 2653 " (a) = 2.3¢53 5 £"(a) = nle,,

the series becomes
X0 Lk n
f@) = Rhfe-0' = f@+ @@=+t G-+

Definition:
Let f be a function with derivatives of all orders in an interval [ containing a.
The Taylor Series generated by f at x = a is

X iz "(a n
@)= 25 -0 = f@) + M@ o)+ + Gre—a)+ -
The Taylor Series generated by f at x = 0 (Maclaurin Series) is

f(z) = §f1<,x><x>k=f<o>+f/< a)(@) + -+ LW @) 4 -




eg 88 Find the Maclaurin series of:

2) f(z) = ¢ Ans: 3L b) f(z) = sin(z) Ans: z(gg),xm
k=0 k=0
O) f(z) = cosh(z) Ans:Y. e d) f(a) = In(1—z) Ans: — Y2
k=0 k=1
) f(r) = tan(x) Ans: 32~ 1)" 3557

eg 89 Use a known Maclaurin series to ﬁnd the series of :
o

a) f(z) = sin(x)cos(x) Ans: QZ 2k+1 b) f(z) = e” Ans: ]:,k
k=0
cos2x >, -1 k 2x 2k
¢) f(z) = cos®(x) = @2 Aps:l 4 ;;}%
00 k
eg 90 Find the Taylor series of f(z) = % atz =2. Ans: ) (2&)1 (x—2)".
k=0
eg 83 Use a known Taylor series to find the series of :
a) f(z) = Zabout z =1. Ans: + = 1+(:}:—1) =S (-D)'@z-1"o0<z<2
k=0
b) f(z) = sin(z) about @ = 7/2. Ans: sin(z) = cos(z — %) = kz_%((;]gf (z— g)%

eg 91 Find the sum of the following series
b 2%+1 . g X (in(2))*
a) Z 2k+1 (5) = sin(5) = lb)kzo( l(c!)) =2.

eg 92 Use a series to find the limit of:

”;f—]ffa:fl a:2+13+14+ )
: et —p—1 : k=0 _ s T Tt gt : 1 X T 1
a) lim“—— = lim*~®——= Iim2 24— = lims+Z+L ... ==
S b p2k+1
b) lim22®) — ; 5w S (= 1) = liml + & 4 = 1
im—~ = lim ~>—— = lim - = lim )
: . . iz iz 0 1 k
eg 93 Find the Maclaurin series of f(z) = “=—. Ans: Z%x%
k=0 '

Taylor Polynomials

The linearization of the function f at the point x = a is the polynomial

p; = f(a) + f'(a)(x — a).If f has higher derivatives, it will higher order polynomial
approximations for each derivative. Since these polynomials are obtained when the Taylor series
is truncated, the ny, degree Taylor Polynomial for the function f at x = a will be defined as

P,(z) = sz, (—a)" = fa) + f(a)(x — a) + -+ L2z — a)" where Py(z) = f(a)

is the zero degree Taylor Polynomial, or the zero degree approximation of f;




Pi(z) = f(a) + f'(a)(x — a) is the first degree Taylor Polynomial, or the first degree
approximation of f;

Py(x) = f(a)+ f'(a)(z —a) + % (z — a)?is the second degree Taylor Polynomial, or the
second degree approximation of f;

P.(z) = f(a) + f'(a)(z — a) + flo) (z—a)’+-- + f(a) (x — a)" is the nydegree Taylor

2l Tl
Polynomial, or the ny, degree approximation of f;

Remainder of a Taylor Polynomial

The error in approximating a function value f(x) by a Taylor Polynomial will be given by its
reminder after the ng, term R, (x). Since f(z) = P,(x)+ R,(x), the error of the
approximation will be |R,,(z) | = | f(z) — P,(z)].

Taylor's Theorem

If f has n + 1 derivatives in an open interval I containing a, then for each x in I, there is a
number c between z and a such tl}at .

f@) = fla)+ f@)(e—a)+ L2 (e —a) + -+ L9z — a)" + R, (), where the

n!
fn,+1 (C) n+1

(n41)!

Lagrange's form of the reminder is given by R,,(x) = (r —a)
Convergence of the Taylor Series
If lim R, (z) = 0, Taylor Series converges to f(x).. Thisis If lim R, (z) =0,

n—oo

n k X0 ok
f(z) = lim ka—(f”)(as —a)k = ka—(,x)(x — a)" on the interval |z — a| < R the radius of
n—00 k=0 k=0
convergence of the series.

eg 94 Evaluate fole’xde with an error < 0.001.

We can represent the integral as the alternating series

: 0 k 2k x k 2k+1 : 5
1 g2 o lz(—l) T o Z(—l) T 1_ .2 L 2 1 _
fo = fo = o= i kDR h=2—sn+sa—mmton—hh=
1 1 1 1 . _ =t
r—shtsg sy ton— Trial and error show Ry = 15 ~ 0008 < .001so

4 ;
fole_‘”Qd:z: = Zk,((;—;):) = .747487 with an error < .001.
k=0



12.11 The Binomial Theorem

m(m—1)(m—2) m(m—1)(m—2)(m—n+1)

1+z)"=1+mz+ = ( )$+Tl‘3+"'+ — " 4.
In closed form y = 1+ Z —L)(m ]j)"'(m_kﬂ) 2*. The binomial theorem can also be written as
k=1 '

& m k m

;(k)x,where(k) mform>kz
eg 95 Show “=Dn=2henbil) _ (my for > 1 .
(m) _ m!  _m(m—1)(m=2)..(m=k+1)(m—k)(m—k—1)(m—k-2)---(2)(1) _ m(m—1)(m—2)...(m—k+1)(m—k)!

k kl(m—k)! k! (m—k)! k! (m—k)!

m(m—1)(m—2)...(m—k+1)
k!
eg 96 Show the interval of convergence of the Binomial series
— 1 1)(m—2)...(m—k+1)(m—k)z*+! k!

P = REEJ D! “mlm—1)(m—2).. (m—k 1 L)z | =

hm | G +1 x| = |z| < 1, so the series converges to the function when |z| < 1.
Note: If m is a non negative integer, the series is finite and (1 + z)" = > (7;):11;’C

k=0

eg 97 Find the series of

1 X2\ kL
(1+2)? _kgo( k )t =

(=
1—2x+3x2—4x3+~--+(n—|—1)x”—|—- =S (-Dk+1) 2
k—

1
(14a)*"

(=2)(=3)(=4)

o

. . 1
eg 98 Find the series of ot
Since ﬁ =(1- x)fl/z, > (‘}{/2)( — :z:)k =

(-3

eg 99 Find the series of sin " 1x.

o0

Since sin~ a:—f\/—dx—fl—l—ZWx%dx:

2k +1

(2k—1) &
T+ Z zkk' Wt 1




