Derivatives of Exponential Functions
Find the derivative of each of the following functions.  



1.		2.		3.	




4.		5.		6.	



7.		8.	 where A and c are constants.  




9.		10.		11.	

12.	The voltage drop across a component of an electric circuit is given by the function 

	 where V(t) is measured in volts and t is time in seconds.
	A)  What is the voltage drop and how fast is it changing when t = 1 second?
	B)  Graph V(t).  What happens to the voltage drop in the long run?

13.	In example 1 we derived a model for the population of FL as a function of time in years since 1990. The function was .  
	A)	What does this model predict for the population of FL in the year 2000 and its rate of change?
	B)	What does P(11) – P(10) mean in context?  How does it compare with the answer in part A.
	C)	On the graph of P(t) show the values calculated in parts A and B.

14.	The graph of  has a horizontal tangent line at what value of x?  What is special about the graph at that point?
[bookmark: _GoBack]15.	Suppose that a culture of bacteria grows in such a way that it starts with 100 bacteria doubles every three hours.  Write a function that gives the number of bacteria as a function of time.  What does the function predict will be the number of bacteria after 30 hours and at what rate will it be growing?
Answers:
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. a) ; b) approaches 10.
13. A) 18.8, 0.56; B) The average rate of change in the population between 2000 and 2001. It is approximately the same.
14. x = 1. It has a turning point there.
15. 

More derivative practice:
Find the derivatives of the following functions.
	
1. 
	
11. 

	
2. 
	
12. 

	
3. 
	
13. 

	
4. 
	
14. 

	
5. 
	
15. 

	
6. 
	
16. 

	
7. 
	
17. 

	
8. 
	
18. 

	
9. 
	
19. 

	
10. 
	
20. 


 
Answers to More derivative practice:
	

1.           
	

11.                  

	

2.               
	

12.               

	

3.                     
	

13.                  

	

4.               
	

14.                 

	

5.               
	

15.           

	

6.               
	

16.                 

	

7.                 
	

17.          

	

8.              
	

18.           

	

9.                   
	

19.        

	

10.               
	

20.                  
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Derivatives of Exponential Functions


 


Find the derivative of each of the following functions.  
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where A and c are constants.  


 


 


9.


 


  


y


=


e


sin(


2


x


)


 


10.


 


  


y


=


Axe


cx


 


11.


 


  


y


=


10


(


e


2


x


+


3


)


7


 


 


12.


 


The voltage drop across a component of an electric circuit is given by the function 
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where V(t) is measured in volts and t is time in seconds.


 


 


A)  What is the voltage drop and how fast is it changing when t = 1 second?


 


 


B)  Graph V(t).  What happens to the voltage drop in the long run?


 


13.


 


In example 1 we derived a mod


el for the population of FL as a function of time in years since 1990. 


The function was 
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A)


 


What does this model predict for the population of FL in the year 2000 and its rate of 


change?


 


 


B)


 


What does P(


11) 


–


 


P(10) mean in context?  How does it compare with the answer in part A.


 


 


C)


 


On the graph of P(t) show the values calculated in parts A and B.


 


14.


 


The graph of 
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has a horizontal tangent line at what value of x?  What is special about the 


graph at that point?


 


15.


 


Suppose that a culture of bacteria grows in such a way that it starts with 100 bacteria doubles 


every three hours.  Write a function that gives the numbe


r of bacteria as a function of time.  What 


does the function predict will be the number of bacteria after 30 hours and at what rate will it be 


growing?
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  where V(t) is measured in volts and t is time in seconds.     A)  What is the voltage drop and how fast is it changing when t = 1 second?     B)  Graph V(t).  What happens to the voltage drop in the long run?   13.   In example 1 we derived a mod el for the population of FL as a function of time in years since 1990.  The function was 
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