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CHAPTER 4 APPLICATIONS OF DIFFERENTIATION
With the derivative in hand, we now explore its importance in both applied and theoretical problems. The first four sections of this chapter are devoted to using derivatives to analyze the behavior of a function and to explain the appearance of its graph. These ideas are then applied to optimization problems. We conclude the chapter with antiderivatives as a prelude to Chapter 5.
4.1 Maxima and Minima
Overview
Definitions are given for absolute maximum and minimum values of a function f over an interval; local maximum and minimum values are also defined. We use the derivative and the concept of a critical point to locate candidates for extreme values of a function.

Lecture 
In this section and the next three, derivatives are employed to discover the properties of functions and their graphs. The text describes the process of determining the important points on the graph of a function.
Note:  A graphing utility can produce an accurate graph of a function, including its roots, extrema, and inflection points. However, a calculator cannot explain the appearance of a graph—we still need calculus to fully understand why a graph looks as it does.
Start with the definition of Absolute Maxima and Minima and Local (relative) Maxima and Minima, and study Examples 1[image: ],2,3,4[image: ].  Go over the Extreme Value Theorem. Watch the Lecture Video [image: ] on page 277.  Then go over Fermat’s Theorem (the proof is not required) and study Examples 5 and 6 . Keep in mind that if f has a local extrema, as described by the theorem, the derivative is zero, but the converse is not true. If the derivative is zero, you may or may not may or may not have a relative extrema. 

Study the definition of a Critical Numbers. Remember that a critical number is defined to be in the interior to the interval of interest (and therefore endpoints are not considered critical points), and critical numbers lie in the domain of the function. Do not confuse a critical number (the x-coordinate of an interesting point on the graph of a function) with the value of a function at that point (the y-coordinate, which often turns out to be an extreme value). Do Example 7[image: ].

Study the Closed Interval Method for locating Absolute Maxima and Minima and Watch the Lecture Video [image: ]Do Examples 8[image: ], 9 and 10.
Remember that critical numbers and endpoints merely provide a list of candidates for corresponding extrema. The task of determining whether a critical point corresponds to a local maximum or minimum value is discussed in Section 3.3.
Homework:
Do the assigned exercises in WebAssign. 

4.3 How Derivatives Affect the Shape of a Graph
Overview
Analysis of the first and second derivatives provides essential information needed to understand the graph of a function.
Lecture
There are several key definitions and theorems presented in this section, upon which the analysis of the first and second derivatives is based.
Start with the concept of increasing and decreasing functions, and study the Tutorial [image: ] Increasing and Decreasing Functions on page 293 and Example 1[image: ] [image: ].

For an additional video, watch the Video Intervals of Increase and Decrease at http://www.brightstorm.com/math/calculus/applications-of-the-derivative/intervals-of-increase-and-decrease .
Continue with the First Derivative Test and study the Tutorial [image: ] Extrema and the First Derivative Test on page 294, and do Example 2, 3[image: ]. This test allows us to classify critical points, and these points (along with their y-coordinates) are generally the most important points to include on the graph of a function.
For an additional video, watch video of the First Derivative Test at http://www.brightstorm.com/math/calculus/applications-of-the-derivative/the-first-derivative-test-for-relative-maximum-and-minimum.  
Go over the definition of Concavity, the terms ‘concave up’, ‘concave down’, and the Concavity Test. Watch the Lecture Video [image: ] on page 296 and do Example 4.
Study the definition of Inflection Point Watch the Lecture Video[image: ], and do Examples 5[image: ] on page 297.
For an additional video, watch video of the concept of Concavity an Inflection Points at
http://www.brightstorm.com/math/calculus/applications-of-the-derivative/concavity-and-inflection-points
Study the concept of the Second Derivative Test and do the Tutorial [image: ]on page 297, and do Examples 6[image: ][image: ], 7[image: ], 8 on pages 298-299.

The Second Derivative Test applies only to critical points where f ′(c) = 0. For this reason, the First Derivative Test is generally a better tool for problems typically encountered in single-variable calculus.
For an additional video, watch video of the Second Derivative Test at
http://www.brightstorm.com/math/calculus/applications-of-the-derivative/the-second-derivative-test-for-relative-maximum-and-minimum

Keep in mind that f ′′(c) = 0, on an interval I containing c, does not imply that f has an inflection point at c. For an inflection point, concavity has to change across c.

Homework:
Do the assigned exercises in WebAssign. 

4.4 Indeterminate Forms and L’ Hospital’s Rule
Overview
L’Hôpital’s Rule is a powerful theorem that provides an efficient means for calculating limits of indeterminate forms. 

Lecture 
In this section L’Hôpital’s Rule will be used for indeterminate forms 0/0, ∞/∞, the indeterminate product 0.∞, the indeterminate differences ∞−∞, and the indeterminate powers 1∞, 00 and ∞0.
Watch the Lecture Videos [image: ] on pages 304-305. Do Examples 1[image: ], 2[image: ],3[image: ][image: ], 4,5[image: ].
Evaluate the indeterminate product in Examples 6[image: ] on page 308. Evaluate the indeterminate differences in Examples 7, 8[image: ] on page 309.  Evaluate the indeterminate powers in Examples 9,10 on page 310 
Do the assigned exercises in WebAssign. 

4.5 Summary of Curve Sketching
Overview
Procedural guidelines are presented for creating an accurate graph of a function.
Lecture 
This section offers no new material; rather, it assembles all the tools needed to graph functions, and it suggests a checklist of important graphical features to investigate.
Study the Guidelines for Sketching a Curve with the Tutorial [image: ]on page 315 and Examples 1[image: ][image: ], 2[image: ], 3[image: ][image: ], 4[image: ], 5, 6[image: ].
Important: Study the Curve sketching Handout

For additional videos, watch videos on curve sketching:
This video is very detailed!
http://www.youtube.com/watch?v=DMYUsv8ZaoY Part 1 of 4
http://www.youtube.com/watch?v=HHeYsgNzKeE&feature=related Part 2 of 4
http://www.youtube.com/watch?v=oy-x-xGWAf4&p=A5C6CF2CC2D96F17&playnext=1&index=21 Part 3 of 4
http://www.youtube.com/watch?v=oy-x-xGWAf4&p=A5C6CF2CC2D96F17&playnext=1&index=21 Part 4 of 4
This video is “faster”!
http://www.youtube.com/watch?v=vOTTuZflAIM&feature=channel Part 1of 2
http://www.youtube.com/watch?v=0Fx6jec8SwY Part 2 of 2
Remember that for Curve Sketching, the more examples you see and practice, the better you get at it.
Homework:
Do the assigned exercises in WebAssign. 

4.7 Optimization Problems
Overview
Optimization problems are one of the highlights of a first semester calculus course because of the obvious connection to multiple disciplines. We apply the results of previous sections to a variety of practical problems.

Lecture
This is a section whose main focus is problem solving, rather than introducing new results. All the tools necessary to solve optimization problems are in place. We need only to recognize when a maximum or minimum value is required (a skill that isn’t necessary for this section because all the exercises are optimization problems, but it’s rather important in a broader context), how to construct an objective function and use constraints to express the function with a single variable, and then to find the critical points and complete the final analysis.
The book offers a set of guidelines that can be carried out to solve most optimization problems encountered in the text. Study the Tutorial [image: ]on page 330 and Examples 1[image: ], 2[image: ][image: ], 3[image: ], 4, 5[image: ]. 

Homework:
Do the assigned exercises in WebAssign. 

6.1 Areas Between Curves
Overview
The method for finding the area of a region under a single curve (Chapter 4) is generalized so that areas bounded by two or more curves can be computed.
Lecture 
Begin by looking at the definition for the area of a region between two curves that intersect no more than twice over some interval. Watch the Lecture Video [image: ] on page 428, and do Example 1[image: ] . 
Remember that a sketch of the region in question is indispensable for determining the limits of integration and the order of subtraction in the integrand. Plotting 3 or 4 points is often sufficient for area sketches; we usually don’t need a detailed graph to visualize the region. It’s a good idea to draw a typical rectangle from the Riemann sum, particularly when integration is with respect to y. 
In many occasions, to find the limits of integration, you need to equate the equations of the bounding curves, to obtain the points of intersections. Do Example 2[image: ], and watch the Lecture Video [image: ] on page 430.
In contrast to the idea of net area in Chapter 5, it doesn’t matter if the bounding curves drop below the x-axis. As long as g(x) is subtracted from f (x), where g(x) < f (x), the height of a typical rectangle from the Riemann sum will be positive.
In cases where the curves intersect more than twice, you must split the region. Do Example 6[image: ] . 

Sometimes if the area yields integrals that are not easily to integrate on the x-axis, you need to integrate with respect to y. There are two reasons to change from integration on the x-axis to integration on the y-axis. You may be able compute an area with fewer integrals, or integration with respect to y may be easier (for instance, a polynomial versus a root function). Do Example 7.
Homework:
Do the assigned exercises in WebAssign. 

Chap4, 6.1 Key Terms and Concepts

Absolute maximum and minimum values 
Extreme Value Theorem 
Local maxima and minima 
Critical numbers 
Increasing and decreasing 
First Derivative Test 
Concavity and inflection points 
Tests for concavity 
Second Derivative Test 
Curve sketching procedures 
Optimization problems 
Antiderivatives and indefinite integrals 
Finding all antiderivatives 
Power rule for indefinite integrals 
Sum and Constant rules 
Rectilinear Motion
Area of a region between two curves with respect to x and y 
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