
Topics for Test #2 (Chapter 3 Sections 3.1-3.6, 3.8-3.11)

CHAPTER 2 DERIVATIVES
Derivative rules for most of the standard functions of calculus are established, including general results and techniques, such as the Chain Rule and implicit differentiation. In addition, we begin to apply the derivative to problems of a practical nature: interpreting the derivative as a rate of change, and related rates problems.


[bookmark: _GoBack]3.1 Derivative of a Function
Overview
In this section we convey ideas about the derivative. 
Lecture

From the last section we defined.

This definition leads to a new function, the derivative. Replacing ‘a’ with the variable ‘x’ produces the limit definition of the derivative. Go over the Rate of Change Tutorial [image: ]on page 115 and do Examples1- 4 Examples 1 and 2 are Video Examples[image: ]Example 2 has a Lecture Video[image: ].  

You should become familiar with the varied notation used to denote the derivative. Study Examples 5[image: ]. Example 5 has a Lecture Video[image: ].  

Study the 3 cases where a function fails to be differentiable and the concept of Higher Derivatives. Go over the Higher Order Derivatives Tutorial [image: ]on page 120 and do Example 6. Example 6 has a Lecture Video[image: ].  

Homework:
Do the assigned exercises in WebAssign. Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 

2.3 Differentiation Formulas
Overview
We begin an informative campaign of deriving formulas for the derivatives of the standard functions of calculus. By section’s end, you will be able to find derivatives of polynomial functions by combining the power, constant multiple, and sum rules. At the end of the section, you will find a table of differentiation formulas.

Lecture 
Several derivative formulas, both general and function-specific, are included in this chapter; most of them are essential for subsequent chapters. 
The time to begin memorizing the formulas is now, not at the end of the chapter.

The derivative of a Constant Function. 
The Power Rule for n a positive integer. Do the Tutorial [image: ]and Lecture Videos[image: ] on page 127. Do Example 1.

The Constant Multiple Rule. Do Example 2.

The Sum Rule. Do Example 3[image: ], Example 4[image: ]  and Example 5.

The Product Rule. The theorem states that the derivative of the product of two functions is the derivative of the first function multiplied by the second function plus the first function multiplied by the derivative of the second function.
Caution: the derivative of the product of two functions is not the product of the derivatives.
Do the Tutorial [image: ] on page 130. Do Examples 6, 7[image: ].
For additional videos, go to www.mathtv.com . In the Videos by Topic section, scroll down to Calculus, and open Derivatives-Product Rule.

The Quotient Rule. The theorem states that the derivative of the quotient of two functions equal the denominator multiplied by the derivative of the numerator minus the numerator  multiplied by the derivative of the denominator, all divided by the denominator squared.
Caution: the derivative of the quotient of two functions is not the quotient of the derivatives.
Do the Lecture Videos[image: ] on page 132. Do Example 8[image: ].
For additional videos, go to www.mathtv.com . In the Videos by Topic section, scroll down to Calculus, and open Derivatives-Quotient Rule.

If one had to identify the top ten student errors when performing differentiation, surely the failure to use the Product and Quotient Rules correctly would be at or near the top of the list. 
Be careful around products and quotients.

Avoid using the Product or Quotient Rules when it is unnecessary. 
As an example, if f (x) = x2 (x − 3), do not use the Product Rule to find the derivative. Instead multiply the factors first, and then use the Power and Sum Rules to find the derivative.
If , do not use the Quotient Rule. Instead divide (or rewrite the function as), and find the derivative as you did in the previous example.


The Power Rule for n a negative integer. Do Example 9.

The Power Rule (General Version). Do Examples 10-13
Homework:
Do the assigned exercises in WebAssign. Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 

2.4 Derivatives of Trigonometric Functions
Overview
We continue our journey of discovering the derivatives of the standard families of functions, this time turning our attention to trigonometric functions.

Lecture
Look at the derivation of the formula for the derivatives of sin x. Do the [image: ]Tools for Enriching Calculus on page 141. Skip the proof of formula 2 on page 142. You need to memorize formulas 2,3and 4.  Do Example 1[image: ]. 
The derivative of cos x can be obtained using the same method used for the derivatives of sin x.
You can find the derivative of the remaining trigonometric functions by employing the Quotient and Power Rules
Need to memorize derivative of the six trigonometric functions (see table page 144. Do Examples 2, 3[image: ], 5, 6[image: ].
Homework:
Do the assigned exercises in WebAssign. In the homework section in BB, you will find (highlighted) problems not in WebAssign that are part of the required homework. These problems will not be collected but may appear in tests
Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 

2.5 The Chain Rule
Overview
The Chain Rule is introduced, both in differential form using Functional Notation and using Leibniz notation. The Chain Rule is a method of differentiating composite functions.

Lecture 
Study Theorem the Chain Rule. Do the Tutorial [image: ] on page 148 and the Lecture Videos[image: ] on page 149. Do Examples 1 [image: ], 2[image: ] and the Lecture Video[image: ] on page 150.
Study the Power Rule combined with the chain rule on page 151 and do Examples 3, 4[image: ], 5,      6[image: ],7[image: ],8. Omit How to prove the chain rule on page 153.

When using Functional Notation, the derivative of a composition of functions F(x) = f(g(x)) is the derivative of the function  f   times the derivative of g. [F’(x) = f’(g(x)) g’(x))]
 As an example: the derivative sin (x2 + x) is the derivative of sin(x2 + x) times the derivative of (x2 + x). So the derivative sin (x2 + x) = cos (x2 + x)*(2x+1).

Notice that when using Leibniz form of the Chain Rule, it’s easy to visually confirm that the formula has been written correctly because the du “cancels” in .
Homework:
Do the assigned exercises in WebAssign. Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 


2.6 Implicit Differentiation
Overview
In order to find the derivative of functions defined implicitly, we present the technique of implicit differentiation. 
Lecture 
Certain curves appear to have well-defined tangent lines throughout, and yet we do not know at present how to compute dy / dx because it is difficult or impossible to solve for y. In those cases, we must use implicit differentiation. Implicit differentiation works by assuming that an equation in x and y does, in fact, define one or more functions y = f (x). We replace all occurrences of y in a given equation with the function y(x), and differentiate with respect to x. The Chain Rule is needed whenever the variable y is composed with another function. Most calculations of dy / dx using the method of implicit differentiation result in a formula involving both x and y, which means that both coordinates of a point are needed to find the slope of a tangent line at that point.
Do the Tutorial [image: ] on page 157 and Examples 1 [image: ][image: ], 2[image: ] 3, 4[image: ].

Homework:
Do the assigned exercises in WebAssign. In the homework section in BB, you will find (highlighted) problems not in WebAssign that are part of the required homework. These problems will not be collected but may appear in tests
Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 

2.8 Related Rates
Overview
Given a relationship between two or more variables that change in time t, we can differentiate the relationship with respect to t to produce a related rates equation. The basic idea in a typical related rates problem is to use the related rates equation to solve for one rate of change in terms of the other rates of change.

Lecture 
In these types of problems it is essential to identify the rates that are known, and the rate that we seek. Once past this step, an equation (sometimes more than one) that relates the variables in question is needed. This equation is then differentiated to produce the related rates equation, from which the solution can be found. In all but the simplest of related rates problems, the Chain Rule is in play; in some cases implicit differentiation provides the most efficient means of producing the related rates equation. 
Now, do Examples 1 [image: ][image: ][image: ], 2, 3[image: ][image: ], 4[image: ][image: ], 5[image: ].
Review the Problem Solving Strategy on page 179. Remember that for Related Rates, the more examples you see and practice, the better you get at it.
Homework:
Do the assigned exercises in WebAssign. Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 

2.9 Linear approximation and Differential
Overview
The line tangent to the graph of a function f at the point (x, f (x)) is used to approximate the value of f at points near x. This idea can also be used to approximate the change in the value of a function given a change in the independent variable, which in turn leads to a definition of and relationship between the differentials dy and dx..

Lecture 
Since a function lies very close to its tangent line at the point of tangency, sometimes is easier to evaluate the function, at a point near the point of tangency, using the equation of the tangent line than using the function itself. Using the equation of the tangent line to approximate the function at the point x= a, is called the ‘linear approximation’ or ‘tangent line approximation of the function at x= a.
Now, do Example 1 [image: ].
The ideas behind linear approximations are sometimes formulated in the terminology and notation of ‘differentials’.
Do the Tutorial [image: ] on page 185 and Example 4 [image: ] on page 187 

Homework:
Do the assigned exercises in WebAssign. Note: All [image: ] Wolfram Demonstrations are optional, but highly recommended. 

Chapter 2 (Sections 2.1-2.6 and 2.8) Key Terms and Concepts
Average and instantaneous rate of change 
The derivative as instantaneous rate of change and slopes of tangent lines
Differentiable implies continuous 
Constant Rule
Power Rule
Constant Multiple Rule
Sum Rule
Generalized Sum and Difference Rule
Higher-order derivatives
Product Rule
Quotient Rule
Extended Power Rule
Important trigonometric limit
Derivatives of sin x and cos x 
Derivatives of the trigonometric functions
Position and velocity
Speed and acceleration
The Chain Rule
Chain Rule for powers
Implicit differentiation 
Power Rule for rational exponents
General Procedure for Related Rate Problems 
Linear Approximation
Differentials
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