MAC 1114 Practice Test \#4 Chapters 7-8

1. Solve the triangle:

Answer: $\beta=110^{\circ}, b=11.1 \mathrm{~cm}, \mathrm{c}=\mathbf{2 . 4 5} \mathrm{cm}$
2. A triangle has sides of sides $\mathbf{1 2 , 9}$, and 5 feet. Find the degree measure of the largest angle in the triangle. Give your answer to one decimal place.
Answer: 115.0°
3. Find the degree measure of the angle α (to the nearest degree) opposite the side a in the triangle with sides $a=10.0, b=5.0, \mathrm{c}=7.0$.
Answer: $\boldsymbol{\alpha}=112^{\circ}$
4. Find the area of the Following triangles

Answer: $9 \sqrt{3} / 2 ; 3 \sqrt{3} / 2$
5. The area of the pictured triangle is 252 square meters. Find the angle $\boldsymbol{\theta}$.

Answer: $\mathbf{3 0}^{\circ}$
6. Find the area of the triangle pictured below.

Answer: $\mathbf{1 8 . 7} \mathbf{m}^{\mathbf{2}}$
7. A pilot is flying from Salt Lake City to Denver, a distance of about 500 miles. After 2 hours of flying at 150 mph , she discovers that she has been flying 16° off course. How far is she from Denver at this time?
Answer: 227 miles

8. Two forces have an angle of 105° between them. F_{1} has magnitude 400 N and F_{2} has magnitude 250 N . Find the magnitude of the resultant force $\mathrm{F}_{\mathbf{1}}+\mathrm{F}_{\mathbf{2}}$.
Answer: $F_{1}+F_{2} \approx 413 \mathrm{~N}$
9. A pilot wishes to fly due north. The plane's air speed is $310 \mathrm{~km} / \mathrm{hr}$. The wind is blowing towards a compass heading of 38° (measured clockwise from north) with a speed of $55 \mathrm{~km} / \mathrm{hr}$. Find the compass heading at which the pilot needs to fly and the resultant ground speed of the plane.
Answer: $353 . \mathbf{7}^{\circ}$; 351km/hr.
10. From one point on the ground, the angle of elevation to the top of a tree is measured at 37°. From another point 25 feet closer, the angle of elevation is 48°. Use Laws of Sine/Cosine to find how tall the tree is.

Answer: 58.6feet;
11. In the figure below, $|u|=11.4 \mathrm{~m} / \mathrm{s},|\mathrm{v}|=8.15 \mathrm{~m} / \mathrm{s}$, and $\theta=27^{\circ} 15^{\prime}$. Find $|u+v|$ and the angle with u.

Answer: $\mathbf{1 9 . 0} \mathbf{~ m} / \mathrm{s}, 11.8^{\circ}$
12. Find the position vector from $A(-4,1)$ to $B(2,5)$.

Answer: <6, 4>
13. If $v=9 i-2 j$ is a vector, find $|v|$

Answer: $\sqrt{85}$.
14. In the figure below, $|u|=11.4 \mathrm{~m} / \mathrm{s},|\mathrm{v}|=8.15 \mathrm{~m} / \mathrm{s}$, and $\theta=27^{\circ} 15{ }^{\prime}$. Find $|u+\mathrm{v}|$ and the angle with u.

Answer: $\mathbf{1 9 . 0} \mathbf{~ m} / \mathrm{s}, 11.8^{\circ}$
15. Point P has polar coordinates (20,5л/3). Find the rectangular coordinates for P.
16. Plot the points $A\left(-3,60^{\circ}\right)$ and $B\left(2,45^{\circ}\right)$ on a polar coordinate graph.
17. Point Q has rectangular coordinates (2,-2). Give the exact polar coordinates (r, θ) for Q with $r \geq 0$ and $0 \leq \theta<2$ л.
18. Write the rectangular equation $9 x y=2 x^{2}$ in polar form.

Answer: $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}=2 / 9$
19. Sketch a graph of the polar equation $r=2 \sec \theta$ by changing to Cartesian. Check graphically.
20. Sketch a graph of the polar equation $r=3 \cos (2 \theta)$. Check graphically.
21. No-Calculator: How many petals do the rose $r=4 \sin (3 \theta)$ has?

