## MAC 1114 Practice Test #2 Chapters 3-4. Lial

1. Convert 55° to radian angle. Your answer should be exact. Answer:  $11\pi/36$ 

2. Convert the radian angle 1/9 to a degree measure. Your answer should be exact. Answer: 20/ $\pi\,^\circ$ 

**3.** Find (without using a calculator) the exact value of: (use the concepts found in the Special Angles Radians link in the Practice Problems in BB

**a)**  $\cot\left(\frac{5\pi}{2}\right)$  **b)**  $\sin\left(\frac{-7\pi}{6}\right)$  **c)**  $\tan\left(\frac{5\pi}{3}\right)$  Answer: 0,  $\frac{1}{2}$ ,  $-\sqrt{3}$ 

4. Use a proportion to find how many radians there are if the two hands of the clock are at 12:20? Answer:  $11\pi/18$  rad

5. A small wheel (radius 5m.) and a large wheel (radius 8m.) rotate at the same time. Through how many degrees will the large wheel rotate if the smaller one rotates through 160'? Answer:  $100^{\circ}$ 

6. An arc of length 2cm subtends an angle of  $\pi^{\circ}$ . Find the exact length of the radius of the circle. Answer:  $360/\pi^2$  cm.

7. Find the area of a sector with radius 6ft. and angle 30°. Answer:  $3\pi$  ft<sup>2</sup>

8. In the circle below, *C* is the center of the circle, and  $\angle BCD$  is a right angle subtended by the arc *s* from *B* to *D*. If the straight-line distance from B to *D* is 4 meters, what is the length the arc *s*?



Answer:  $\sqrt{2}\pi$ 

9. Find the least positive value of x where the graph of  $y = 50\cos(6x)$  crosses the x-axis. Show the graph. Answer:  $\pi/12$ 

10. (No Calculator) Sketch the graph  $y = 3\cos\left(2x + \frac{\pi}{3}\right)$  for  $0 \le x \le 3\pi$ . Include all

the coordinates of all maximum and minimum points. Label your asymptotes if any. Check your answer by graphing with a calculator. 11. The graph pictured below has an equation of the form  $y = a \sin(bx)$  find a and b.



Answer: *a*= - 6, *b*=1/2

12. The graph pictured below has an equation of the form  $y = a \cos(bx + c)$ . Find *a*, *b* and *c*. You can check your answer with your calculator.



Answer: *a*=1, *b*=3, *c*=-π/4;

13. (No Calculator) Sketch one period of the graph of  $y = \cot(\pi x - \frac{\pi}{4})$ . Label your intercepts and asymptotes. Check your answer by graphing with a calculator. 14. (No Calculator) Sketch one period of the graph of  $y = \cot\left(\pi x + \frac{\pi}{2}\right)$ . Label your intercepts and asymptotes. Check your answer by graphing with a calculator. 15. (No Calculator) List the period and phase shift for  $y = \tan\left(\frac{1}{2}x + \frac{\pi}{4}\right)$ . Answer:  $P = 2\pi$ , Shift = - $\pi/2$  ( $\pi/2$  to the left)

| 10. Complete the Following Tuble |                 |       |               |       |  |
|----------------------------------|-----------------|-------|---------------|-------|--|
| $3\pi/2$                         | (270°)          |       |               |       |  |
| π                                | ( <b>180</b> °) |       |               |       |  |
| $\pi/2$                          | ( <b>90</b> °)  |       |               |       |  |
| $\pi/3$                          | (60°)           |       |               |       |  |
| $\pi/4$                          | (45°)           |       |               |       |  |
| $\pi/6$                          | ( <b>30</b> °)  |       |               |       |  |
| 0                                | ( <b>0</b> °)   |       |               |       |  |
| θ                                |                 | sin 0 | $\cos \theta$ | tan θ |  |

16. Complete the Following Table

17. Find the exact values for each trig function. Draw the reference triangle. Check your answers using your calculator.

| a) $\sin\left(-5\pi/6\right) =$ | b) $\cos(-7\pi/2) =$  | c) $\tan(7\pi/3) =$  |
|---------------------------------|-----------------------|----------------------|
| d) $\cos(2\pi/3) =$             | e) $\tan(7\pi/4) =$   | f) $\tan(-3\pi/2) =$ |
| g) sec $(2\pi) =$               | h) cot (-5 $\pi/3$ )= | i) $\csc(7\pi/6) =$  |

You must know the table found in the link 'Special Angles Radians' found in the 'Practice Problems' link of this web-page.