1. Convert 55° to radian angle. Your answer should be exact. Answer: 11 $\pi / 36$
2. Convert the radian angle $1 / 9$ to a degree measure. Your answer should be exact. Answer: 20/ $\boldsymbol{\pi}^{\circ}$
3. Find (without using a calculator) the exact value of: (use the concepts found in the Special Angles Radians link in the Practice Problems in BB
a) $\cot \left(\frac{5 \pi}{2}\right)$ b) $\sin \left(\frac{-7 \pi}{6}\right)$ c) $\tan \left(\frac{5 \pi}{3}\right)$ Answer: $0,1 / 2,-\sqrt{3}$
4. Use a proportion to find how many radians there are if the two hands of the clock are at 12:20? Answer: 11л/18 rad
5. A small wheel (radius 5m.) and a large wheel (radius 8 m .) rotate at the same time. Through how many degrees will the large wheel rotate if the smaller one rotates through 160° ? Answer: 100°
6. An arc of length 2 cm subtends an angle of $\pi{ }^{\circ}$. Find the exact length of the radius of the circle. Answer: $360 / \pi^{2} \mathrm{~cm}$.
7. Find the area of a sector with radius $\mathbf{6 f t}$. and angle 30°.

Answer: $3 \mathrm{Jft}{ }^{2}$
8. In the circle below, C is the center of the circle, and $\angle B C D$ is a right angle subtended by the arc s from B to D. If the straight-line distance from B to D is 4 meters, what is the length the arc s ?

Answer: $\sqrt{2} \pi$
9. Find the least positive value of \boldsymbol{x} where the graph of $y=50 \cos (6 x)$ crosses the x-axis. Show the graph. Answer: $\pi / 12$
10. (No Calculator) Sketch the graph $y=3 \cos \left(2 x+\frac{\pi}{3}\right)$ for $0 \leq x \leq 3 \pi$. Include all the coordinates of all maximum and minimum points. Label your asymptotes if any. Check your answer by graphing with a calculator.
11. The graph pictured below has an equation of the form $y=a \sin (b x)$ find \boldsymbol{a} and \boldsymbol{b}.

Answer: $a=-6, b=1 / 2$
12. The graph pictured below has an equation of the form $y=a \cos (b x+c)$.

Find a, b and c. You can check your answer with your calculator.

Answer: $a=1, b=3, c=-\pi / 4$;
13. (No Calculator) Sketch one period of the graph of $y=\cot \left(\pi x-\frac{\pi}{4}\right)$. Label your intercepts and asymptotes. Check your answer by graphing with a calculator.
14. (No Calculator) Sketch one period of the graph of $y=\cot \left(\pi x+\frac{\pi}{2}\right)$. Label your intercepts and asymptotes. Check your answer by graphing with a calculator.
15. (No Calculator) List the period and phase shift for $y=\tan \left(\frac{1}{2} x+\frac{\pi}{4}\right)$.

Answer: $\mathrm{P}=\mathbf{2} \pi, \quad$ Shift $=-\pi / 2(\pi / 2$ to the left $)$
16. Complete the Following Table

$3 \pi / 2$ (270 ${ }^{\circ}$)			
$\pi \quad\left(180{ }^{\circ}\right)$			
\%/2 (90 ${ }^{\circ}$)			
$\pi / 3 \quad\left(60^{\circ}\right)$			
$\begin{array}{ll}\pi / 4 & \left(45^{\circ}\right)\end{array}$			
$\pi / 6 \quad\left(30^{\circ}\right)$			
$0 \quad\left(0^{\circ}\right)$			
$\boldsymbol{\theta}$	$\sin \theta$	$\cos \theta$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$

17. Find the exact values for each trig function. Draw the reference triangle. Check your answers using your calculator.
a) $\sin (-5 \pi / 6)=$
b) $\cos (-7 \pi / 2)=$
c) $\tan (7 \pi / 3)=$
d) $\cos (2 \pi / 3)=$
e) $\boldsymbol{\operatorname { t a n }}(7 \pi / 4)=$
f) $\boldsymbol{\operatorname { t a n }}(-3 \pi / 2)=$
g) $\sec (2 \pi)=$
h) $\cot (-5 \pi / 3)=$
i) $\csc (7 \pi / 6)=$

You must know the table found in the link 'Special Angles Radians' found in the 'Practice Problems' link of this web-page.

