MAC 1114 Practice Test \#1 Chapters 1-2 Lial

1. Find an angle supplementary to $37^{\circ} 30$,

Answer: $\mathbf{1 4 2}^{\circ}{ }^{\circ}{ }^{\prime}$
2. Find the angle of smallest possible positive angle coterminal with 530° Answers: $\mathbf{1 7 0}^{\circ}$
3. A pulley rotates at $\mathbf{4 5 0} \mathrm{rpm}$. How many revolutions does the pulley make in one second?
Answer: 7.5
4. A pulley rotates through 60° in one second. How many rotations does the pulley make in one minute?
Answer: 10 rotations
5. In the diagram below, triangle ABC is similar to triangle ADE.

Find the length of the side AC.

Answer: 10
6. Use cofunctions identities to find the solution of $\cos \theta=\sin 5 \theta$. Assume $\boldsymbol{\theta}$ is acute.

Answer: $\boldsymbol{\theta}=\mathbf{1 5}^{\circ}$
7. Find the coordinates of the point P on the circle of radius 2 , if the central angle is 60°.

Answer: (1, $-\sqrt{3}$)
8. In the triangle pictured below, $\cos (\theta)=0.712$. What is the length of \boldsymbol{a} to the nearest tenth?

Answer: $a=10.7$
9. A painter needs to reach a ladder to a point 6.5 meters up the side of a house. If the ladder is to make a 55° angle with the ground, how long must the ladder be?

Answer: 7.9 meters
10. Solve the triangle pictured in the figure below. Give $\boldsymbol{\theta}$ to the nearest degree.

Answer: $\boldsymbol{\theta}=\mathbf{3 1}{ }^{\circ}, a=\mathbf{2 1 . 7 1}$
11. The point $(-\sqrt{3},-2)$ is on the terminal side of an angle $\boldsymbol{\theta}$. Find the exact value of $\cos \theta$.
Answer: $\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=-\sqrt{3 / 7}$
12. If $\cos x=-2 / 5$ and $\sin <0$, find $\tan x$ exactly.

Answer: $\boldsymbol{\operatorname { t a n }} \boldsymbol{x}=\sqrt{21} / 2$
13. Find the following trigonometric ratios of the triangle:

$$
\cos \theta=
$$

$$
\tan \left(90^{\circ}-\alpha\right)=
$$

$$
\csc \theta=
$$

$$
\cot \theta=
$$

$$
\tan \alpha=
$$

$$
\sec \left(90^{\circ}-\theta\right)=
$$

Ans: $\cos \theta=3 / 5, \tan \left(90^{\circ}-\alpha\right)=4 / 3, \csc \theta=5 / 4, \cot \theta=3 / 4 \tan \alpha=3 / 4 \quad \sec \left(90^{\circ}-\theta\right)=5 / 4$
14. The angle of depression from the top of a tall building to the top of a shorter building is 40°. The angle of depression from the top of a tall building to the base of the shorter building is 65°. If the shorter building is $\mathbf{1 5 0}$ feet tall, what is the distance between the two buildings? How high is the tall building?
Answer: Distance 115ft. (110ft to two significant digits); height 246ft (250ft to two significant digits)

15. An observer is located at the origin of a coordinate system. Find the bearing of an object located at the point $(-1, \sqrt{3})$. You must express your answer using the two ways of describing bearings discussed in book.
Answers: $\mathbf{3 3 0}^{\circ}$; W 60 N
16. From one point on the ground, the angle of elevation to the top of a tree is measured at 37°. From another point 25 feet closer, the angle of elevation is 48°. How tall is the tree?
Answer: 59 feet

