LINEAR AND ANGULAR VELOCITY

Consider the formula for arc length of a sector of a circle $s=r \theta$.
If we divide by time t, we obtain $\frac{s}{t}=r \frac{\theta}{t}$. This can be written as $V=r \omega$ where $V=\frac{s}{t}$ is the linear velocity of a point on a circle or the change in arc length per unit of time, and $\omega=\frac{\theta}{t}$ is the angular velocity of a point on a circle or the change in radian measure per unit of time.

Example1: Suppose that point P is on a circle with radius 10 cm , and ray $O P$ is rotating with angular velocity $\pi / 18$ radian per second.
(a) Find the angle generated by P in 6 seconds.

Ans: $\theta=\pi / 3 \mathrm{rad}$.
(b) Find the distance traveled by P along the circle in 6 seconds

Ans: $s=10 \pi / 3 \mathrm{~cm}$.
(c) Find the linear velocity of P

Ans: $v=5 \pi / 9 \mathrm{~cm}$ per second.
Example 2: A belt runs a pulley of radius 6 cm at 80 revolutions per minute.
(a) Find the angular velocity of the pulley in radians per second.

Ans: $\omega=8 \pi / 3 \mathrm{rad} / \mathrm{s}$
(b) Find the linear velocity of the belt in centimeters per second. $v=16 \pi \mathrm{~cm} / \mathrm{s}$.

Example 3: A satellite traveling in a circular orbit 1600 km above the surface of Earth takes two hours to make an orbit. Assume that the radius of Earth is 6400 km .
(a) Find the linear velocity of the satellite.

Ans: $v=8000 \pi \mathrm{~km} / \mathrm{hr}$.
(b) Find the distance traveled in 4.5 hours.

Ans: $36,000 \pi \mathrm{~km}$.

Exercises:

1. If a point moves around the circumference of a unit circle at an angular velocity of 1 radian per second, how long will it take for the point to move around the entire circle? Ans: $2 \pi \mathrm{sec}$.
2. If a point moves around the circumference of a unit circle at a speed of 2 units per second, how long will it take for the point to move around the entire circle? Ans: π sec 3 . Find ω for each of the following.
a) The minute hand of a clock b) the second hand of a clock Ans: $\pi / 30 \mathrm{rad} / \mathrm{min} \pi / 30$ $\mathrm{rad} / \mathrm{sec}$.
3. Find v for the tip of the hour hand of a clock, if the hand is 6 cm long. Ans: $\pi \mathrm{cm} / \mathrm{hr}$ 5. Find v for the tip of an airplane propeller blade 2 m long, rotating 500 times per minute.
Ans: $2000 \pi \mathrm{~m} / \mathrm{min}$.
4. The tires of a bicycle have radius 13 inches and are turning at the rate of 200 revolutions per minute. How fast is the bicycle traveling in miles per hour? (Hint: 5280 feet $=1$ mile.)
Ans: $15.5 \mathrm{mi} / \mathrm{h}$
5. Mars rotates on its axis at the rate of .2552 radians per hour. Approximately how many hours are in a Martian day? Ans: 24.6206hrs.
6. Earth travels about the sun in an orbit that is almost circular. Assume that the orbit is a circle, with radius $93,000,000$ miles. Its angular and linear velocities are used in designing solar power facilities.
(a) Assume that a year is 365 days, and find θ, the angle formed by Earth's movement in one day. Ans: $\pi / 182.5 \mathrm{rad}$
(b) Give the angular velocity in radians per hour. Ans: $\pi / 4380 \mathrm{rad} / \mathrm{hr}$.
(c) Find the linear velocity of Earth in miles per hour. Ans: $66,700 \mathrm{mi} / \mathrm{hr}$.
7. The two pulleys connected by a belt have radii of 15 cm and 8 cm , respectively. The larger pulley rotates 25 times in 36 seconds. Find the angular velocity of each pulley in radians per second. Ans: large: $25 \pi / 18$; small: $125 \pi / 48$
8. A thread is being pulled off a spool at the rate of 59.4 cm per second. Find the radius of the spool if it makes 152 revolutions per minute. Ans: 3.73 cm .
9. Earth revolves on its axis once every 24 hours. Assuming that Earth's radius is 6400 km . find the following:
(a) angular velocity of Earth in radians per day and radians per hour. Ans: $\pi / 12 \mathrm{rad} / \mathrm{hr}$
(h) linear velocity at the North Pole or South Pole. Ans: $v=0$
(c) linear velocity at Quito, Ecuador, a city on the equator Ans: $13 \pi / 3 \mathrm{~km} / \mathrm{hr}$.
(d) linear velocity at Salem, Oregon (halfway from the equator to the North Pole)

Ans: $13 \sqrt{2} \pi / 6 \mathrm{~km} / \mathrm{hr}$.
12. A railroad track is laid along the arc of a circle of radius 1800 feet. The circular part of the track subtends a central angle of 40°. How long (in seconds) will it take a point on the front of a train traveling 30 mph to go around this portion of the track? Ans: 28.56 s .
13. A 90 -horsepower outboard motor at full throttle will rotate its propeller at 6000 revolutions per minute. Find the angular velocity of the propeller in radians per second. Ans: $200 \pi \mathrm{rad} / \mathrm{s}$.
14. An electrical wind generator has propeller blades that are 5.00 m long. If the blades are rotating at $8 \pi \mathrm{rad} / \mathrm{sec}$, what is the linear velocity (to the nearest meter per second) of a point on the tip of one of the blades?
Ans: $v=126 \mathrm{~m} / \mathrm{s}$
15. A point on the rim of a 6.0 in . diameter wheel is traveling at $75 \mathrm{ft} / \mathrm{sec}$. What is the angular velocity of the wheel (in radians per second)?
Ans: $\omega=300 \mathrm{rad} / \mathrm{s}$
16. If a 6 cm shaft is rotating at $4,000 \mathrm{rpm}$ (revolutions per minute), what is the speed of a particle on its surface (in centimeters per minute, to two significant digits)?
Ans: $v=24,000 \pi \mathrm{~cm} / \mathrm{min}$
17. The $25,000 \mathrm{lb}$ Hubble space telescope was launched April 1990 and placed in a 380 mi circular orbit above the earth's surface. It completes one orbit every 97 min , going from a dawn-to-dusk cycle nearly 15 times a day. If the radius of the earth is $3,964 \mathrm{mi}$, what is the linear velocity of the space telescope in miles per hour (mph)?
Ans: $17,000 \mathrm{mph}$.
18. A 16 mm diameter shaft rotates at $1,500 \mathrm{rps}$ (revolutions per second). Find the speed of a particle on its surface (to the nearest meter per second).
19. A 6 cm diameter shaft rotates at 500 rps . Find the speed of a particle on its surface (to the nearest meter per second).
20. An earth satellite travels in a circular orbit at $20,000 \mathrm{mph}$. If the radius of the orbit is $4,300 \mathrm{mi}$, what angular velocity (in radians per hour, to three significant digits) is generated?
21. A bicycle is ridden at a speed of $7.0 \mathrm{~m} / \mathrm{sec}$. If the wheel diameter is 64 cm , what is the angular velocity of the wheel in radians per second?
22. The velocity of sound in air is approx. $335.3 \mathrm{~m} / \mathrm{sec}$. If an airplane has a 3.000 m diameter propeller, at what angular velocity will its tip pass through the sound harrier?
23. If an electron in an atom travels around the nucleus in a circular orbit at 8.11×10^{6} cm / s, what angular velocity (in radians per second) does it generate, assuming the radius of the orbit is $5.00 \times 10^{-9} \mathrm{~cm}$?

