Identities
$\sin ^{2}(a)+\cos ^{2}(a)=1, \sec ^{2}(a)-\tan ^{2}(a)=1, \csc ^{2}(a)-\cot ^{2}(a)=1$
$\cos (a \mp b)=\cos (a) \cos (b) \pm \sin (a) \sin (b), \sin (a \pm b)=\sin (a) \cos (b) \pm \cos (a) \sin (b)$
$\sin (2 a)=2 \sin (a) \cos (a), \cos (2 a)=\left\{\begin{array}{l}\cos ^{2}(a)-\sin ^{2}(a) \\ 1-2 \sin ^{2}(a) \\ 2 \cos ^{2}(a)-1\end{array}, \tan (2 a)=\frac{2 \tan (a)}{1-\tan ^{2}(a)}\right.$
$\sin ^{2} x=\frac{1-\cos 2 x}{2}, \cos ^{2} x=\frac{1+\cos 2 x}{2}, \sin \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1-\cos x}{2}}, \cos \left(\frac{x}{2}\right)= \pm \sqrt{\frac{1+\cos x}{2}}$
Inverse Functions
$y=\sin ^{-1} x,-\pi / 2 \leq y \leq \pi / 2, \quad y=\csc ^{-1} x=\sin ^{-1} 1 / x,-\pi / 2<y<\pi / 2, y \neq 0$
$y=\cos ^{-1} x, 0 \leq y \leq \pi \quad y=\sec ^{-1} x=\cos ^{-1} 1 / x, 0<y<\pi, y \neq \pi / 2$
$y=\tan ^{-1} x,-\pi / 2<y<\pi / 2$
$y=\cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x, \quad 0<y<\pi$

The Inverse functions formulas show the way the functions are restricted.

Examples:

Find $\sin ^{-1} 1 / 2$. This problem asks for the angle whose sine is $1 / 2$. Since the sine is restricted from $-\pi / 2 \leq x \leq \pi / 2$ and the sine is positive in the first quadrant, $y=\sin ^{-1} 1 / 2=\pi / 6$ is the angle desired.

Find $\sin ^{-1}-\sqrt{3} / 2$. This problem asks for the angle whose sine is $-\sqrt{3} / 2$. Since the sine is restricted from $-\pi / 2 \leq x \leq \pi / 2$ and the sine is negative in the fourth quadrant, $\sin ^{-1}-\sqrt{3} / 2=-\pi / 3$ is the angle desired

Find $\cos ^{-1} 1 / 2$. This problem asks for the angle whose cosine is $1 / 2$. Since the cosine is restricted from $0 \leq x \leq \pi$ and the cosine is positive in the first quadrant, $\cos ^{-1} 1 / 2=\pi / 3$ is the angle desired.

Find $\cos ^{-1}-\sqrt{3} / 2$. This problem asks for the angle whose cosine is $-\sqrt{3} / 2$. Since the cosine is restricted from $0 \leq x \leq \pi$ and the cosine is negative in the second quadrant, $y=\cos ^{-1}-\sqrt{3} / 2=5 \pi / 6$ is the angle desired. Note that $5 \pi / 6$ has a reference angle of $\pi / 6$

Find $\cot ^{-1}-\sqrt{3}$. To find the angle whose cotangent is $-\sqrt{3}$, we use the formula $\cot ^{-1}-\sqrt{3}=\frac{\pi}{2}-\tan ^{-1}-\sqrt{3}$. Since the tangent is restricted from $-\pi / 2<x<\pi / 2$ and the tangent is negative in the fourth quadrant, $\tan ^{-1}-\sqrt{3}=\frac{\pi}{3}$, so $\cot ^{-1}-\sqrt{3}=\frac{\pi}{2}-\tan ^{-1}-\sqrt{3}=\frac{\pi}{2}-\left(-\frac{\pi}{3}\right)=\frac{5 \pi}{6}$

Find $\sec ^{-1}-2$. To find the angle whose secant is -2 , we use the formula $y=\sec ^{-1}-2=\cos ^{-1}-1 / 2=2 \pi / 3$, since the cosine is negative in the second quadrant.

Find $\csc ^{-1}-2$. To find the angle whose cosecant is -2 , we use the formula $y=\csc ^{-1}-2=\sin ^{-1}-1 / 2=-\pi / 6$, since the \sin is negative in the fourth quadrant.

