Algebraic Addition of Sinusoids With the Same Frequency

The sum of two sinusoids with the same frequency of the form $y=N \cos (b t)+M \sin (b t)$, where N and M are real numbers, can be expressed as $y=A \sin (b t+c)$ where $A=\sqrt{N^{2}+M^{2}}$ and $\tan (c)=\frac{N}{M}$.

Proof:

Given $y=N \cos (b t)+M \sin (b t)$, if we let $N=A \sin (c)$, and $M=A \cos (c)$ the expression becomes $y=A \sin (c) \cos (b t)+A \cos (c) \sin (b t)=A \sin (b t+c)$ (sine of sum of angles formula).
If we add the squares of N and M we obtain $N^{2}+N^{2}=A^{2}$ or $A=\sqrt{N^{2}+M^{2}}$. If we divide N by M we obtain $\tan (c)=\frac{N}{M}$ where the quadrant of c will be given by the signs of N and M.
We can find the angle c by the signs of N and M.
Since we are assuming $A>0$, the sign of N is the same as sign of $\sin (c)$ ($N=A \sin (c)$) and the sign of M is the same as the sign of $\cos (c)(M=A \cos (c))$. Lets say $N>0(\sin (c)>0)$ and $M<0$
$(\cos (c)<0), c$ is in the second quadrant. The quadrants for the other three combinations of the signs of N and M can be found the same way.
eg. Express $y=2 \cos (3 x)+2 \sqrt{3} \sin (3 x)$ as $A \sin (b x+c)$.
$A=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=4, c=\tan ^{-1}(2 / 2 \sqrt{3})=\tan ^{-1}(1 / \sqrt{3})=\pi / 6$.
Since N and M are positive, the angle is in the first quadrant, so the form is $y=4 \sin (3 x+\pi / 6)$
eg. Express $y=-\cos (2 x)-\sqrt{3} \sin (2 x)$ as $A \sin (b x+c)$.
$A=\sqrt{1^{2}+\sqrt{3}^{2}}=2, c=\tan ^{-1}(-1 /-\sqrt{3})=\tan ^{-1}(1 / \sqrt{3})=\pi / 6$.
Since N and M are negative, the angle is in the third quadrant, so the form is $y=2 \sin (2 x+7 \pi / 6)$.
eg. Express $y=3 \cos (2 x / 5)-3 \sin (2 x / 5)$ as $A \sin (b x+c)$.
$A=\sqrt{3^{2}+3^{2}}=3 \sqrt{2}, c=\tan ^{-1}(3 /-3)=\tan ^{-1}(-1)=-\pi / 4$. Since $N=A \sin (c)$ is positive and $M=A \cos (c)$ is negative, the angle is in the second quadrant, so the form is $y=3 \sqrt{2} \sin (2 x / 5+3 \pi / 4)$

