Significant Digits in Measurement

Integers

If your measurement has no decimal point, count digits from the first digit to the last non zero digit
eg. A measure of 2600 has two significant digits. The error of this measure is 50 , so the accuracy is $2600 \pm \mathbf{5 0}$ or between 2550 and 2650 .

Decimals

If your measurement has a decimal point, count digits from the first non zero digit to the last digit. eg. A measure of 25.300 has 5 significant digits with error of the measure is $\mathbf{0 0 0 5}$ or the acurracy between 25.2995 and 25.3005
eg. 2.30×3^{-5} has 3 significant digits whereas 2.300×3^{-5} has 4 significant digits.

Accuracy in Calculated Values

Answers to multiplication have as many significant digits as the number with the smallest number of significant digits.
eg. $\frac{200 . \times 34.0}{12}=570$ to two significant digits whereas
$\frac{200 \times 34.0}{12}=\mathbf{6 0 0}$ to one significant digit.

Rounding 5

If your last digit is 5 and the digit preceding 5 is an odd number, you round up. If your last digit is 5 and the digit preceding 5 is an even number, you round down.
eg. 13.5 rounds to 14 to 2 significant digits.
12.5 rounds to 12 to 2 significant digits, but
12.5001 rounds to 13 to 2 significant digits.

Angles

To the nearest degree $\boldsymbol{\rightarrow} \mathbf{2}$ significant digits
To the nearest tenth of a degree or nearest $10^{\prime} \rightarrow 3$ significant digits
To the nearest hundredth of a degree or nearest $1^{\prime} \rightarrow 4$ significant digits
To the nearest thousand of a degree or nearest $0.1^{\prime} \rightarrow 5$ significant digits eg. $\operatorname{Sin} \mathbf{2 0}^{\circ} \mathbf{1 0}^{\prime}=.345$ (3 significant digits) whereas
$\operatorname{Sin20}{ }^{\circ} 11^{\prime}=.3450$ (4 significant digits)

