Proof and Logic Exam 2

Don't put work or answers on the test. Write clearly and answer questions completely.

- 1. Suppose that the universal set is $\{1,2,3,4,5,6,7,8,9,10\}$. Let $A = \{1,2,4,5\}$, $B = \{2,3,5,6\}$, $C = \{2,6,7,8,9\}$. List the elements in each of the following sets.
- $A \cup (B \cap C)$
- B) A B
- $(A \cap C)^{\circ}$.
- 2. Suppose $A = \{a,b,c,d\}$ and $B = \{p,q,r,s\}$.
 - A) Give an example of a function $f: A \rightarrow B$ which is an injection.
 - B) Give an example of a function g: $A \rightarrow B$ which is not a surjection.
- 3. The operations \oplus and \otimes are addition and multiplication on Z_8 . Calculate the indicated values.
- A) [4] ⊕ [5] = ____
 - B) [3] ⊗ [5] = ____
- C) $[3]^3 =$
 - D) Find a and b such that $[a] \neq [0]$, $[b] \neq [0]$ but $[a] \otimes [b] = [0]$
- 4. Let Z be the set of integers and let R be the set of real numbers, and the $Z \times R$ is the Cartesian product. Classify each of the following as True or False.
- A) $13 \in Z \times R$
- B) $\pi \in Z \times R$
- C) $(10,\pi) \in \mathbb{Z} \times \mathbb{R}$
- D) $(\pi,10) \in Z \times R$

- 5. Suppose that A and B are subsets of a universal set. Fill in the blank with the either the word "and" or the word "or". Don't put your answers on the test.
- A) $x \in A B$ means that $x \in A _ x \notin B$.
- B) $x \notin A \cup B$ means that $x \notin A \subseteq x \notin B$.
- C) $x \notin A \cap B$ means that $x \notin A \subseteq x \notin B$.
- 6. Let N be the set of natural numbers. Suppose $d: N \to N$ where d(n) is the number of natural number divisors of n. For example d(6) = 4 since 1,2,3,6 are the natural number divisors of 6.
 - A) Find d(15).
 - B) Is d(15) = d(3)*d(5)?
 - C) Is d(8) = d(2)*d(4)?
 - D) Is d an injection? Explain.
- 7. Prove DeMorgan's Law: $(A \cup B)^c = A^c \cap B^c$.
- 8. Suppose $f: R \rightarrow R$ is defined by f(x) = 3x + 5. Prove that f is a bijection.
- \bigcirc 9. Use mathematical induction to prove: For all $n \in \mathbb{N}$

$$3+6+9+\dots 3n=\frac{3n(n+1)}{2}$$