MHF 2300 Logic and Proof Exam 1

Directions: Answer all questions clearly and completely on a separate sheet of paper.

1. Write precise definitions for each of the following terms.
a) Define a divides b where a, b are integers with $a \neq 0$.
b) Define x is rational where x is a real number.
c) Define c is congruent to d modulo n where c, d are integers and n is a natural number.
2. Suppose s and t are integers with $t>0$.
a) State the Division Algorithm precisely in terms of s and t.
b) Give an example of the Division Algorithm (as stated in part a) where $s=70$ and $t=6$.
c) Give an example of the Division Algorithm (as stated in part a) where $s=-11$ and $t=20$.
3. Write the negation of each of the following predicates. Don't worry about quantifiers here.
a) $\quad x<0$ or $x=5$
b) $\quad n$ is an odd integer and n is not a multiple of 5 .
4. Proposition: If n^{2} is a multiple of 2 then n is even.
a) Write the contra positive of the proposition.
b) Write the converse of the proposition.
c) Which of these is logically equivalent to the proposition?
5. A real valued function f with domain D is said to be bounded provided that there exists a real number M such that $|f(x)| \leq M$ for all $x \in D$.

Negate the above definition by writing what it means for a real valued function f with domain D to be not bounded.
6. Suppose our universe of discourse is the set of real numbers. Each of the following quantified statements are true EXCEPT for one. Circle the statement that is false.

- $\forall x \exists y \quad x+y=y$
- $\exists x \forall y \quad x+y=y$
- $\exists y \forall x \quad x \cdot y=x$
- $\forall x \exists y \quad x \cdot y=x$

7. Make a truth table to show that $\neg P \rightarrow Q$ is logically equivalent to $P \vee Q$.
8. It is a fact that $P \rightarrow(Q \vee R)$ is logically equivalent to $(P \wedge \neg Q) \rightarrow R$. Show how this logical equivalence can be applied to restate the following proposition:

If 3 divides $b c$ then 3 divides b or 3 divides c.
9. a) List five integers that are congruent to $3 \bmod 7$.
b) $543 \equiv$ \qquad $(\bmod 11)$ Fill in the blank with an integer between 0 and 11.
c) If $m \equiv 5(\bmod 8)$ and $n \equiv 2(\bmod 8)$ then $m n \equiv$ \qquad $(\bmod 8)$ Fill in the blank with an integer between 0 and 7 .
d) Write the statement "There exists an integer k such that $n=8 k+3$ " as an equivalent statement using congruence.
10. Theorem: If 3 does not divide n then 3 divides $n^{2}-1$.

If you were planning to prove this theorem using the method of cases based on the Division Algorithm what cases would you use? Only show the cases; don't try to write a formal proof.
11. Suppose a, b, c are integers with $a \neq 0$. Conjecture: If a divides $b c$ then a divides b or a divides c. Show that this conjecture is false by finding a counterexample. (Hint: Try $a=4$ and then find values for b and c that will make the implication false).
12. Let a, b, c be integers with $a \neq 0$ and $b \neq 0$. Prove that if a divides b and b divides c then a divides c. Be sure to point out the integer that you are required to find for the proof.

