MHF 2300 Logic and Proof Exam 1

Directions: Answer all questions clearly and completely on a separate sheet of paper.

- 1. Write precise definitions for each of the following terms.
 - a) Define a divides b where a, b are integers with $a \neq 0$.
 - b) Define x is rational where x is a real number.
 - c) Define c is congruent to d modulo n where c, d are integers and n is a natural number.
- 2. Suppose *s* and *t* are integers with t > 0.
 - a) State the Division Algorithm precisely in terms of s and t.
 - b) Give an example of the Division Algorithm (as stated in part a) where s = 70 and t = 6.
 - c) Give an example of the Division Algorithm (as stated in part a) where s = -11 and t = 20.
- 3. Write the negation of each of the following predicates. Don't worry about quantifiers here.
 - a) x < 0 or x = 5
 - b) n is an odd integer and n is not a multiple of 5.
- 4. Proposition: If n^2 is a multiple of 2 then *n* is even.
 - a) Write the contra positive of the proposition.
 - b) Write the converse of the proposition.
 - c) Which of these is logically equivalent to the proposition?
- 5. A real valued function f with domain D is said to be **bounded** provided that there exists a real number M such that $|f(x)| \le M$ for all $x \in D$.

Negate the above definition by writing what it means for a real valued function f with domain D to be **not bounded**.

- 6. Suppose our universe of discourse is the set of real numbers. Each of the following quantified statements are true EXCEPT for one. Circle the statement that is false.
 - ∀x∃y x+y=y
 ∃x∀y x+y=y
 ∃y∀x x⋅y=x
 ∀x∃y x⋅y=x
- 7. Make a truth table to show that $\neg P \rightarrow Q$ is logically equivalent to $P \lor Q$.
- 8. It is a fact that $P \to (Q \lor R)$ is logically equivalent to $(P \land \neg Q) \to R$. Show how this logical equivalence can be applied to restate the following proposition:

If 3 divides bc then 3 divides b or 3 divides c.

- 9. a) List five integers that are congruent to 3 mod 7.
 - b) $543 \equiv (\mod 11)$ Fill in the blank with an integer between 0 and 11.
 - c) If $m \equiv 5 \pmod{8}$ and $n \equiv 2 \pmod{8}$ then $mn \equiv _ \pmod{8}$ Fill in the blank with an integer between 0 and 7.
 - d) Write the statement "There exists an integer k such that n = 8k + 3" as an equivalent statement using congruence.
- 10. Theorem: If 3 does not divide *n* then 3 divides $n^2 1$. If you were planning to prove this theorem using the method of cases based on the Division Algorithm what cases would you use? Only show the cases; don't try to write a formal proof.
- 11. Suppose a, b, c are integers with $a \neq 0$. Conjecture: If *a* divides *bc* then *a* divides *b* or *a* divides *c*. Show that this conjecture is false by finding a counterexample. (Hint: Try a = 4 and then find values for *b* and *c* that will make the implication false).
- 12. Let a, b, c be integers with $a \neq 0$ and $b \neq 0$. Prove that if a divides b and b divides c then a divides c. Be sure to point out the integer that you are required to find for the proof.