Theorem: For any integers a, b, and c with $a \neq 0$, if a divides b and a divides c, then a divides $b+c$.

Proof: Let a, b, and c be integers with $a \neq 0$. We assume that a divides b and that a divides c. We need to prove that a divides $b+c$. This means that we need to find an integer q such that

$$
b+c=a q .
$$

Our assumption that a divides both b and c means that there exists integers m and n such that

$$
\begin{align*}
b & =a m, \text { and } \tag{1}\\
c & =a n \tag{2}
\end{align*}
$$

We can now add equations (1) and (2) to obtain

$$
b+c=a m+a n
$$

Using the distributive property on the right-hand side of the above equation yields

$$
\begin{equation*}
b+c=a(m+n) \tag{3}
\end{equation*}
$$

Since m and n are integers, the expression $m+n$ appearing in equation (3) is also an integer by the closure property of addition. By setting

$$
q=m+n
$$

we have found the required integer mentioned at the beginning of the proof. This proves that a divides $b+c$. Since a, b, and c were arbitrary integers with $a \neq 0$, we have shown that for any integers a, b, and c with $a \neq 0$, if a divides b and a divides c, then a divides $b+c$.
Q.E.D

