Page 303
 Problem \#13

Part a) Let $f: Z \times Z \rightarrow Z$ be defined by $f(m, n)=2 m+n$. I claim that f is a surjection and f is not an injection.

Proof: Let $p \in Z$. We need to find a pre-image for p. That is, we need to find an element $q \in Z \times Z$ such that $f(q)=p$. The element q has the form (x, y) where x and y are integers.

Case 1: Suppose that p is even. Then we have that $p=2 r$ for some integer r. Equivalently, $p=2 r+0$. So by setting $x=r$ and $y=0$ we have $q=(r, 0)$ and $f(q)=p$ as required.

Case 2: Suppose that p is odd. Then we have that $p=2 s+1$ for some integer s. So by setting $x=s$ and $y=1$ we have $q=(s, 1)$ and $f(q)=p$ as required.

In either case, it follows that f is a surjection.

To prove that f is not an injection, we have to find elements p and q both members of $Z \times Z$ such that $p \neq q$ and $f(p)=f(q)$. To this end let $p=(3,1)$ and $q=(-1,9)$. We can see that $p \neq q$ since $3 \neq-1$ and $1 \neq 9$. Now look at the equation below.

$$
f(p)=f[(3,1)]=2(3)+1=7=2(-1)+9=f[(-1,9)]=f(q)
$$

This equation shows that $f(p)=f(q)$ even though $p \neq q$. This shows that f is not injective. This concludes the proof.

Part b) Let $g: Z \times Z \rightarrow Z$ be defined by $g(m, n)=6 m+3 n$. I claim that g is not a surjection and g is not an injection.

Proof: To show that g is not a surjection, we need to find an element $q \in Z$ such that $g(p) \neq q$ for all $p \in Z \times Z$. If we take $q=5$, then let $p=(x, y) \in Z \times Z$. We need to show that $g(p) \neq 5$. By way of contradiction, suppose for the moment that $f(p)=5$. This means that $6 x+3 y=5$. This last equation implies that $2 x+y=5 / 3$. We know that x and y are integers and that integers are closed under addition and multiplication. This means that $2 x+y$ must be an integer yet we know that $5 / 3$ is not an integer. This is a contradiction, hence $g(p) \neq 5$ which is what we were required to show.

To prove that g is not an injection, we have to find elements p and q both members of $Z \times Z$ such that $p \neq q$ and $g(p)=g(q)$. To this end, let $p=(1,2)$ and $q=(-3,10)$. We can see that $p \neq q$ since $1 \neq-3$ and $2 \neq 10$. Now look at the equation below.

$$
g(p)=g[(1,2)]=6(1)+3(2)=12=6(-3)+3(10)=g[(-3,10)]=g(q)
$$

This equation shows that $g(p)=g(q)$ even though $p \neq q$. This shows that g is not injective. This concludes the proof.

