MAC 2312 Calculus with Analytic Geometry II TEST 4 - Part Two

Name \qquad Score \qquad
Directions: This is the take-home portion of the test. You must do all the problems contained here individually. You MAY NOT solicit help from anyone. You will get a grade of ZERO for this portion if you are caught cheating. Part one has 36 points and part two has 14 points making a total of 50 points on this test. Your grade will be based on a percentage of the total points.

1. Define a sequence recursively as follows: $a_{1}=1$ and $a_{2}=1$, and for $n \geq 3, a_{n}=a_{n-1}+a_{n-2}$. This is the famous Fibonacci sequence. Now define a new sequence by $b_{n}=\frac{a_{n+1}}{a_{n}}$. This new sequence of numbers denoted $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges. Find the exact real number this sequence converges to. (Hint: How do b_{n} and b_{n-1} relate to each other in the form of an equation? Once you find such an equation, take the limit of both sides and assume that $\lim _{n \rightarrow \infty} b_{n}=\lim b_{n-1}^{n \rightarrow \infty}$, $=b$ where b is the real number the sequence converges to. Next solve for b.$) \quad (7 points)$
2. Find the exact sum of the following telescoping series. Use algebra to justify your work for full credit. (Hint: Perform a partial fraction decomposition and use $\frac{-1}{x+1}=\frac{-1}{2(x+1)}+\frac{-1}{2(x+1)}$.) (7 points)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}+3 n^{2}+2 n}
$$

