1.

If we were to use the "washer" method, we would first have to locate the local maximum point (a, b) of $\mathrm{y}=\mathrm{x}(\mathrm{x}-1)^{2}$ using the methods of Chapter 4. Then we would have to solve the equation $y=x(x-1)^{2}$ for x in terms of y to obtain the functions $x=g_{1}(y)$ and $x=g_{2}(y)$ shown in the first figure. This step would be difficult because it involves the cubic formula. Finally we would find the volume using $V=\pi \int_{0}^{b}\left\{\left[g_{1}(y)\right]^{2}-\left[g_{2}(y)\right]^{2}\right\} d y$.

Using shells, we find that a typical approximating shell has radius x, so its circumference is $2 \pi x$. Its height is y, that is, $x(x-1)^{2}$. So the total volume is

$$
V=\int_{0}^{1} 2 \pi x\left[x(x-1)^{2}\right] d x=2 \pi \int_{0}^{1}\left(x^{4}-2 x^{3}+x^{2}\right) d x=2 \pi\left[\frac{x^{5}}{5}-2 \frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1}=\frac{\pi}{15}
$$

3.

$$
\begin{aligned}
V & =\int_{1}^{2} 2 \pi x \cdot \frac{1}{x} d x=2 \pi \int_{1}^{2} 1 d x \\
& =2 \pi[x]_{1}^{2}=2 \pi(2-1)=2 \pi
\end{aligned}
$$

13. The curves intersect when $4 x^{2}=6-2 x \Leftrightarrow 2 x^{2}+x-3=0 \Leftrightarrow(2 x+3)(x-1)=0 \Leftrightarrow x=-\frac{3}{2}$ or 1 . Solving the equations for x gives us $y=4 x^{2} \Rightarrow x= \pm \frac{1}{2} \sqrt{y}$ and $2 x+y=6 \Rightarrow x=-\frac{1}{2} y+3$.

$$
\begin{aligned}
\mathrm{V} & =2 \pi \int_{0}^{4}\left\{y\left[\left(\frac{1}{2} \sqrt{y}\right)-\left(-\frac{1}{2} \sqrt{y}\right)\right]\right\} \mathrm{dy}+2 \pi \int_{4}^{9}\left\{y\left[\left(-\frac{1}{2} y+3\right)-\left(-\frac{1}{2} \sqrt{y}\right)\right]\right\} \mathrm{dy} \\
& =2 \pi \int_{0}^{4}(y \sqrt{y}) \mathrm{dy}+2 \pi \int_{4}^{9}\left(-\frac{1}{2} y^{2}+3 y+\frac{1}{2} y^{3 / 2}\right) \mathrm{dy}=2 \pi\left[\frac{2}{5} y^{5 / 2}\right]_{0}^{4}+2 \pi\left[-\frac{1}{6} y^{3}+\frac{3}{2} y^{2}+\frac{1}{5} y^{5 / 2}\right]_{4}^{9} \\
& =2 \pi\left(\frac{2}{5} \cdot 32\right)+2 \pi\left[\left(-\frac{243}{2}+\frac{243}{2}+\frac{243}{5}\right)-\left(-\frac{32}{3}+24+\frac{32}{5}\right)\right] \\
& =\frac{128}{5} \pi+2 \pi\left(\frac{433}{15}\right)=\frac{1250}{15} \pi=\frac{250}{3} \pi
\end{aligned}
$$

17.

$$
\begin{aligned}
V & =\int_{1}^{2} 2 \pi(4-x) x^{2} d x=2 \pi\left[\frac{4}{3} x^{3}-\frac{1}{4} x^{4}\right]_{1}^{2} \\
& =2 \pi\left[\left(\frac{32}{3}-4\right)-\left(\frac{4}{3}-\frac{1}{4}\right)\right]=\frac{67}{6} \pi
\end{aligned}
$$

21. $V=\int_{2 \pi}^{3 \pi} 2 \pi x \sin x d x$

22. $V=\int_{0}^{3} 2 \pi(7-x)\left[\left(4 x-x^{2}\right)-x\right] d x$

29. $\int_{0}^{3} 2 \pi x^{5} d x=2 \pi \int_{0}^{3} x\left(x^{4}\right) d x$. The solid is obtained by rotating the region $0 \leq y \leq x^{4}, 0 \leq x \leq 3$ about the y-axis using cylindrical shells.
31. $\int_{0}^{1} 2 \pi(3-y)\left(1-y^{2}\right) d y$. The solid is obtained by rotating the region bounded by (i) $x=1-y^{2}, x=0$, and $y=0$ or (ii) $x=y^{2}, x=1$, and $y=0$ about the line $y=3$ using cylindrical shells.
32. $\int_{0}^{\pi / 4} 2 \pi(\pi-x)(\cos x-\sin x) d x$. The solid is obtained by rotating the region bounded by (i) $0 \leq y \leq \cos x-\sin x, 0 \leq x \leq \frac{\pi}{4}$ or (ii) $\sin x \leq y \leq \cos x, 0 \leq x \leq \frac{\pi}{4}$ about the line $x=\pi$ using cylindrical shells.
33.

From the graph, the curves intersect at $x=0$ and at $x=a \approx 1.32$, with $x+x^{2}-x^{4}>0$ on the interval ($0, \mathrm{a}$). So the volume of the solid obtained by rotating the region about the $y-$ axis is

$$
\begin{aligned}
V & =2 \pi \int_{0}^{a}\left[x\left(x+x^{2}-x^{4}\right)\right] d x=2 \pi \int_{0}^{a}\left(x^{2}+x^{3}-x^{5}\right) d x \\
& =2 \pi\left[\frac{1}{3} x^{3}+\frac{1}{4} x^{4}-\frac{1}{6} x^{6}\right]_{0}^{a} \approx 4.05
\end{aligned}
$$

34.

From the graph, the curves intersect at $x=0$ and at $x=a \approx 1.17$, with $3 x-x^{3}>x^{4}$ on the interval ($0, \mathrm{a}$). So the volume of the solid obtained by rotating the region about the y - axis is

$$
\begin{aligned}
V & =2 \pi \int_{0}^{a}\left\{x\left[\left(3 x-x^{3}\right)-x^{4}\right]\right\} d x=2 \pi \int_{0}^{a}\left(3 x^{2}-x^{4}-x^{5}\right) d x \\
& =2 \pi\left[x^{3}-\frac{1}{5} x^{5}-\frac{1}{6} x^{6}\right]_{0}^{a} \approx 4.62
\end{aligned}
$$

35.

$V=2 \pi \int_{0}^{\pi / 2}\left[\left(\frac{\pi}{2}-x\right)\left(\sin ^{2} x-\sin ^{4} x\right)\right] d x$

$$
\stackrel{\mathrm{CAS}}{=} \frac{1}{32} \pi^{3}
$$

36.
$V=2 \pi \int_{0}^{\pi}\left\{[x-(-1)]\left(x^{3} \sin x\right)\right\} d x \stackrel{\text { CAS }}{=} 2 \pi\left(\pi^{4}+\pi^{3}-12 \pi^{2}-6 \pi+48\right)$

$$
=2 \pi^{5}+2 \pi^{4}-24 \pi^{3}-12 \pi^{2}+96 \pi
$$

37. Use disks:

$$
\begin{aligned}
V & =\int_{-2}^{1} \pi\left(x^{2}+x-2\right)^{2} d x=\pi \int_{-2}^{1}\left(x^{4}+2 x^{3}-3 x^{2}-4 x+4\right) d x \\
& =\pi\left[\frac{1}{5} x^{5}+\frac{1}{2} x^{4}-x^{3}-2 x^{2}+4 x\right]_{-2}^{1}=\pi\left[\left(\frac{1}{5}+\frac{1}{2}-1-2+4\right)-\left(-\frac{32}{5}+8+8-8-8\right)\right] \\
& =\pi\left(\frac{33}{5}+\frac{3}{2}\right)=\frac{81}{10} \pi
\end{aligned}
$$

38. Use shells:

$$
\begin{aligned}
V & =\int_{1}^{2} 2 \pi x\left(-x^{2}+3 x-2\right) d x=2 \pi \int_{1}^{2}\left(-x^{3}+3 x^{2}-2 x\right) d x \\
& =2 \pi\left[-\frac{1}{4} x^{4}+x^{3}-x^{2}\right]_{1}^{2}=2 \pi\left[(-4+8-4)-\left(-\frac{1}{4}+1-1\right)\right]=\frac{\pi}{2}
\end{aligned}
$$

39. Use shells:

$$
\begin{aligned}
V & =\int_{1}^{4} 2 \pi[x-(-1)]\left[5-\left(x^{2}-5 x+9\right)\right] d x \\
& =2 \pi \int_{1}^{4}(x+1)\left(-x^{2}+5 x-4\right) d x \\
& =2 \pi \int_{1}^{4}\left(-x^{3}+4 x^{2}+x-4\right) d x=2 \pi\left[-\frac{1}{4} x^{4}+\frac{4}{3} x^{3}+\frac{1}{2} x^{2}-4 x\right]_{1}^{4} \\
& =2 \pi\left[\left(-64+\frac{256}{3}+8-16\right)-\left(-\frac{1}{4}+\frac{4}{3}+\frac{1}{2}-4\right)\right] \\
& =2 \pi\left(\frac{63}{4}\right)=\frac{63 \pi}{2}
\end{aligned}
$$

40. Use washers:

$$
\begin{aligned}
V & =\int_{-1}^{1} \pi\left\{[2-0]^{2}-\left[2-\left(1-y^{4}\right)\right]^{2}\right\} d y \\
& =2 \pi \int_{0}^{1}\left[4-\left(1+y^{4}\right)^{2}\right] d y[\text { by symmetry }] \\
& =2 \pi \int_{0}^{1}\left[4-\left(1+2 y^{4}+y^{8}\right)\right] d y=2 \pi \int_{0}^{1}\left(3-2 y^{4}-y^{8}\right) d y \\
& =2 \pi\left[3 y-\frac{2}{5} y^{5}-\frac{1}{9} y^{9}\right]_{0}^{1}=2 \pi\left(3-\frac{2}{5}-\frac{1}{9}\right)=2 \pi\left(\frac{112}{45}\right)=\frac{224 \pi}{45}
\end{aligned}
$$

41. Use disks: $V=\pi \int_{0}^{2}\left[\sqrt{1-(y-1)^{2}}\right]^{2} d y=\pi \int_{0}^{2}\left(2 y-y^{2}\right) d y=\pi\left[y^{2}-\frac{1}{3} y^{3}\right]_{0}^{2}=\pi\left(4-\frac{8}{3}\right)=\frac{4}{3} \pi$
42. Using shells, we have

$$
\begin{aligned}
V & =\int_{0}^{2} 2 \pi y\left[\sqrt{1-(y-1)^{2}}-\left(-\sqrt{1-(y-1)^{2}}\right)\right] d y \\
& \left.=2 \pi \int_{0}^{2} y \cdot 2 \sqrt{1-(y-1)^{2}} d y=4 \pi \int_{-1}^{1}(u+1) \sqrt{1-u^{2}} d u \text { [let } u=y-1\right] \\
& =4 \pi \int_{-1}^{1} u \sqrt{1-u^{2}} d u+4 \pi \int_{-1}^{1} \sqrt{1-u^{2}} d u
\end{aligned}
$$

The first definite integral equals zero because its integrand is an odd function. The second is the area of a semicircle of radius 1 , that is, $\frac{\pi}{2}$. Thus, $V=4 \pi \cdot 0+4 \pi \cdot \frac{\pi}{2}=2 \pi^{2}$.
43.

$$
\begin{aligned}
V & =2 \int_{0}^{r} 2 \pi x \sqrt{r^{2}-x^{2}} d x=-2 \pi \int_{0}^{r}\left(r^{2}-x^{2}\right)^{1 / 2}(-2 x) d x=\left[-2 \pi \cdot \frac{2}{3}\left(r^{2}-x^{2}\right)^{3 / 2}\right]_{0}^{r} \\
& =-\frac{4}{3} \pi\left(0-r^{3}\right)=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

44.

$$
\begin{aligned}
V & =\int_{R-r}^{R+r} 2 \pi x \cdot 2 \sqrt{r^{2}-(x-R)^{2}} d x \\
& =\int_{-r}^{r} 4 \pi(u+R) \sqrt{r^{2}-u^{2}} d u \quad[\text { let } u=x-R]
\end{aligned}
$$

$$
=4 \pi R \int_{-r}^{r} \sqrt{r^{2}-u^{2}} d u+4 \pi \int_{-r}^{r} u \sqrt{r^{2}-u^{2}} d u
$$

The first integral is the area of a semicircle of radius r, that is, $\frac{1}{2} \pi r^{2}$, and the second is zero since the integrand is an odd function. Thus, $V=4 \pi R\left(\frac{1}{2} \pi r^{2}\right)+4 \pi \cdot 0=2 \pi R r^{2}$

45. $V=2 \pi \int_{0}^{r} x\left(-\frac{h}{r} x+h\right) d x=2 \pi h \int_{0}^{r}\left(-\frac{x^{2}}{r}+x\right) d x=2 \pi h\left[-\frac{x^{3}}{3 r}+\frac{x^{2}}{2}\right]_{0}^{r}=2 \pi h \frac{r^{2}}{6}=\frac{\pi r^{2} h}{3}$
46. By symmetry, the volume of a napkin ring obtained by drilling a hole of radius r through a sphere with radius R is twice the volume obtained by rotating the area above the x - axis and below the curve $y=\sqrt{R^{2}-x^{2}}$ (the equation of the top half of the cross-section of the sphere), between $x=r$ and $x=R$, about the y - axis.
This volume is equal to

$$
2 \int_{\text {inner radius }}^{\text {outer radius }} 2 \pi r h d x=2 \cdot 2 \pi \int_{r}^{R} x \sqrt{R^{2}-x^{2}} d x=4 \pi\left[-\frac{1}{3}\left(R^{2}-x^{2}\right)^{3 / 2}\right]_{r}^{R}=\frac{4}{3} \pi\left(R^{2}-r^{2}\right)^{3 / 2}
$$

But by the Pythagorean Theorem, $R^{2}-r^{2}=\left(\frac{1}{2} h\right)^{2}$, so the volume of the napkin ring is
$\frac{4}{3} \pi\left(\frac{1}{2} h\right)^{3}=\frac{1}{6} \pi h^{3}$, which is independent of both R and r; that is, the amount of wood in a napkin ring of height h is the same regardless of the size of the sphere used. Note that most of this calculation has been done already, but with more difficulty, in Exercise 6.2.68.
Another solution: The height of the missing cap is the radius of the sphere minus half the height of the cut-out cylinder, that is, $R-\frac{1}{2} h$. Using Exercise 6.2.49,
$V_{\text {napkin ring }}=V_{\text {sphere }}-V_{\text {cylinder }}-2 V_{\text {cap }}=\frac{4}{3} \pi R^{3}-\pi r^{2} h-2 \cdot \frac{\pi}{3}\left(R-\frac{1}{2} h\right)^{2}\left[3 R-\left(R-\frac{1}{2} h\right)\right]=\frac{1}{6} \pi h^{3}$

