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If we were to use the "washer" method, we would first have to locate the local maximum point (a,b)

of y=x(x-1) ?us ng the methods of Chapter 4. Then we would have to solve the equation y=x (x-1) ?
for x in terms of y to obtain the functions x=g 1(y) and x:gz(y) shown in the first figure. This step
would be difficult because it involves the cubic formula. Finally we would find the volume using
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Using shells, we find that atypical approximating shell has radius x , so its circumference is 27 x. Its
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3
13. The curves intersect when 4x2:&2xc> 2x2+x—3:0@ (2x+3)(x—1):0<l> X=-5 or 1. Solving the
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equations for x gives us y=4x° — x=-+ 5 VY and 2x+y=6= x=- = y+3
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29. f27rx5dx:27r f x(x4) dx . The solid is obtained by rotating the region 0< y< x4 , 0< x< 3 about the
0 0

y —axis using cylindrical shells.

1
31. f27r(&y)(1—y2) dy . The solid is obtained by rotating the region bounded by (i) x:1—y2 , =0, and
0

y=0 or (ii) x:y2 , x=1 , and y=0 about the line y=3 using cylindrical shells.

nl4
32. f 2 (m—X)(cos x-sin X)dx . The solid is obtained by rotating the region bounded by
0

s

(i)Ogygcosxsinx,ngg% or (if) sinx<y<cosx, 0< x< 2

cylindrical shells.

about the line x=r using
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33.
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From the graph, the curves intersect at x=0 and at x=a~1.32 , with x+X'-x >0 on the interval (0,a).
So the volume of the solid obtained by rotating the region about the y- axisis

V= 27rf[x(x+x x)]dx—27zf(x +X xs)dx
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From the graph, the curvesintersect at x=0 and at x=a~1.17 , with 3x—x3>x4 on the interval (O,a). So
the volume of the solid obtained by rotating the region about the y- axisis
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0 0
_ 3151¢6|?
—27r[x5x6 ]~462

35.

1

CAS 1

= 37

N A

—x> (sin *x-sin 4x) ] dx




Sewart Calculus 5e 053439339X;6. Applications of Integration; 6.3 Volumes by Cylindrical Shells

7T

v =27 { [X-(-D)]OCsin x)} X o (4127 67 +48)
0

=042 247> 1277+ 967

D Y
10
-1 0 T X
37. Usedisks:
1 1
V=|n (x2+x—2) de:n f (x4+2x3—3x2—4x+4) dx
-2 -2

1514 3 2 1 1 1 32

s [ g X o XX —2X +4x] e [ < 5+ 5 12+4>< 5 +8+&&8> ]
3 3)_8l

\572/)7107

38. Use shells:
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39. Use shdlls;
4

V = f27r[x )][5(x2—5x+9)]dx

27rf X+1 ( X 45X 4)d
1

4 4
27rf( XCHIX X 4)dx— [—1 X+ 4x3+ 1x2 4x] L

(

SO

1 4 1
<64+ +&16><4+3 §4>]
6_3>__ﬂ
4 ) 2

y=x>—5x+9

y
x=-1
\(1, 5) (4,5) /
y=>5
A\

40. Use washers:
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42. Using shells, we have
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Thefirst definite integral equals zero because its integrand is an odd function. The second is the area

of asemicircle of radius 1 , that is, z . Thus, V=4rr- 0+47- %:27r2.
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Thefirst integral isthe area of a semicircle of radiusr , that is, énrz,

1
and the second is zero since the integrand is an odd function. Thus, V=471 R < > r 2) +471- 0=27Rr 2

=)
=
=
=

' h r x2 x3 x2 r r2 nrzh
45.V=2r [ x ( - x+h> dx=27h| ( = +x> dx=27h [ o } =2rh = =—

0 r 0 r I 2 Jo 6 3
46. By symmetry, the volume of a napkin ring obtained by drilling a hole of radiusr through a sphere
with radius R is twice the volume obtained by rotating the area above the x- axis and below the curve

y= Rz—x2 (the equation of the top half of the cross-section of the sphere), between x=r and x=R,
about the y- axis.
Thisvolumeisequal to

outer radius R
1 3271R 4 32
2 | 2xrhdx=2- 27 x R-X dx=dr [ 3 (Rz—xz) ] =37 (Rz—rz)
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But by the Pythagorean Theorem, Rz—r % ( h) , S0 the volume of the napkinring is
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3
gn ( —; h) = %3 7rh3 , which isindependent of both R andr ; that is, the amount of wood in a

napkin ring of height h is the same regardless of the size of the sphere used. Note that most of this
calculation has been done aready, but with more difficulty, in Exercise 6.2.68.
Another solution: The height of the missing cap is the radius of the sphere minus half the height of the

. : 1 : .
cut-out cylinder, that is, R- > h . Using Exercise 6.2.49,
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