3. Since $x_{1}=3$ and $y=5 x-4$ is tangent to $y=f(x)$ at $x=3$, we simply need to find where the tangent line intersects the x - axis. $y=0 \Rightarrow 5 x_{2}-4=0 \Rightarrow x_{2}=\frac{4}{5}$.
4. $f(x)=x^{3}+2 x-4 \Rightarrow f^{\prime}(x)=3 x^{2}+2$, so $x_{n+1}=x_{n}-\frac{x_{n}^{3}+2 x_{n}-4}{3 x_{n}^{2}+2}$. Now $x_{1}=1 \Rightarrow x_{2}=1-\frac{1+2-4}{3 \cdot 1^{2}+2}=1-\frac{-1}{5}=1.2 \Rightarrow$
$x_{3}=1.2-\frac{(1.2)^{3}+2(1.2)-4}{3(1.2)^{2}+2} \approx 1.1797$.
5. To approximate $x=\sqrt[3]{30}$ (so that $x^{3}=30$), we can take $f(x)=x^{3}-30$. So $f^{\prime}(x)=3 x^{2}$, and thus, $x_{n+1}=x_{n}-\frac{x_{n}^{3}-30}{3 x_{n}^{2}}$. Since $\sqrt[3]{27}=3$ and 27 is close to 30 , we'll use $x_{1}=3$. We need to find approximations until they agree to eight decimal places. $x_{1}=3 \Rightarrow x_{2} \approx 3.11111111, x_{3} \approx 3.10723734$, $x_{4} \approx 3.10723251 \approx x_{5}$. So $\sqrt[3]{30} \approx 3.10723251$, to eight decimal places. Here is a quick and easy method for finding the iterations for Newton's method on a programmable calculator. (The screens shown are from the TI-83 Plus, but the method is similar on other calculators.) Assign $f(x)=x^{3}-30$ to Y_{1}, and $f^{\prime}(x)=3 x^{2}$ to Y_{2}. Now store $x_{1}=3$ in X and then enter $\mathrm{X}-\mathrm{Y}_{1} / \mathrm{Y}_{2} \rightarrow \mathrm{X}$ to get $x_{2}=3 . \overline{1}$. By successively pressing the ENTER key, you get the approximations x_{3}, x_{4}, \ldots.

In Derive, load the utility file NEWTON $\left(x^{\wedge} 3-30, x, 3\right)$ and then APPROXIMATE to get . You can request a specific iteration by adding a fourth argument. For example, $\operatorname{NEWTON}\left(x^{\wedge} 3-30, x, 3,2\right)$ gives [3,3.11111111,3.10723733].
In Maple, make the assignments $\mathrm{f}:=x \rightarrow x^{\wedge} 3-30 ;, \mathrm{g}:=x \rightarrow x-f(x) / D(f)(x) ;$, and $x:=3$.;. Repeatedly execute the command $\mathrm{x}:=g(x)$; to generate successive approximations.

In Mathematica, make the assignments $f[x]:=x^{\wedge} 3-30, g[x]:=x-f[x] / f^{\prime}[x]$, and $x=3$. Repeatedly execute the command $x=g[x]$ to generate successive approximations.
13. $f(x)=2 x^{3}-6 x^{2}+3 x+1 \Rightarrow f^{\prime}(x)=6 x^{2}-12 x+3 \Rightarrow x_{n+1}=x_{n}-\frac{2 x_{n}^{3}-6 x_{n}^{2}+3 x_{n}+1}{6 x_{n}^{2}-12 x_{n}+3}$. We need to find approximations until they agree to six decimal places. $x_{1}=2.5 \Rightarrow x_{2} \approx 2.285714, x_{3} \approx 2.228824$, $x_{4} \approx 2.224765, x_{5} \approx 2.224745 \approx x_{6}$. So the root is 2.224745 , to six decimal places.
15. $\sin x=x^{2}$, so $f(x)=\sin x-x^{2} \Rightarrow f^{\prime}(x)=\cos x-2 x \Rightarrow x_{n+1}=x_{n}-\frac{\sin x_{n}-x_{n}^{2}}{\cos x_{n}-2 x_{n}}$. From the figure, the positive root of $\sin x=x^{2}$ is near $1 . x_{1}=1 \Rightarrow x_{2} \approx 0.891396, x_{3} \approx 0.876985, x_{4} \approx 0.876726 \approx x_{5}$. So the positive root is 0.876726 , to six decimal places.

29. $f(x)=x^{3}-3 x+6 \Rightarrow f^{\prime}(x)=3 x^{2}-3$. If $x_{1}=1$, then $f^{\prime}\left(x_{1}\right)=0$ and the tangent line used for approximating x_{2} is horizontal. Attempting to find x_{2} results in trying to divide by zero.
37.

The volume of the silo, in terms of its radius, is $V(r)=\pi r^{2}(30)+\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)=30 \pi r^{2}+\frac{2}{3} \pi r^{3}$.
From a graph of V, we see that $V(r)=15,000$ at $r \approx 11 \mathrm{ft}$. Now we use Newton's method to solve the equation $V(r)-15,000=0 . \frac{d V}{d r}=60 \pi r+2 \pi r^{2}$, so $r_{n+1}=r_{n}-\frac{30 \pi r_{n}^{2}+\frac{2}{3} \pi r_{n}^{3}-15,000}{60 \pi r_{n}+2 \pi r_{n}^{2}}$. Taking $r_{1}=11$, we
get $r_{2} \approx 11.2853, r_{3} \approx 11.2807 \approx r_{4}$. So in order for the silo to hold $15,000 \mathrm{ft}^{3}$ of grain, its radius must be about 11.2807 ft .

