3. Since $x_1=3$ and y=5x-4 is tangent to y=f(x) at x=3, we simply need to find where the tangent line intersects the x- axis. $y=0 \Rightarrow 5x_2-4=0 \Rightarrow x_2=\frac{4}{5}$.

5.
$$f(x) = x^3 + 2x - 4 \Rightarrow f'(x) = 3x^2 + 2$$
, so $x_{n+1} = x_n - \frac{x_n^3 + 2x_n - 4}{3x_n^2 + 2}$. Now $x_1 = 1 \Rightarrow x_2 = 1 - \frac{1 + 2 - 4}{3 \cdot 1^2 + 2} = 1 - \frac{-1}{5} = 1.2 \Rightarrow$

$$x_3 = 1.2 - \frac{(1.2)^3 + 2(1.2) - 4}{3(1.2)^2 + 2} \approx 1.1797.$$

11. To approximate $x = \sqrt[3]{30}$ (so that $x^3 = 30$), we can take $f(x) = x^3 - 30$. So $f'(x) = 3x^2$, and thus, $x_{n+1} = x_n - \frac{x_n^3 - 30}{3x_n^2}$. Since $\sqrt[3]{27} = 3$ and 27 is close to 30, we'll use $x_1 = 3$. We need to find

approximations until they agree to eight decimal places. $x_1=3 \Rightarrow x_2 \approx 3.11111111$, $x_3 \approx 3.10723734$, $x_4 \approx 3.10723251 \approx x_5$. So $\sqrt[3]{30} \approx 3.10723251$, to eight decimal places. Here is a quick and easy method for finding the iterations for Newton's method on a programmable calculator. (The screens shown are from the TI–83 Plus, but the method is similar on other calculators.) Assign $f(x)=x^3-30$ to Y_1 , and $f'(x)=3x^2$ to Y_2 . Now store $x_1=3$ in X and then enter X– $Y_1/Y_2 \rightarrow X$ to get $x_2=3.1$. By successively pressing the ENTER key, you get the approximations x_3 , x_4 ,

In Derive, load the utility file NEWTON($x^3-30,x,3$) and then APPROXIMATE to get. You can request a specific iteration by adding a fourth argument. For example, NEWTON($x^3-30,x,3,2$) gives [3,3.1111111,3.10723733].

In Maple, make the assignments $f:=x \rightarrow x^3-30$; , $g:=x \rightarrow x-f(x)/D(f)(x)$; , and x:=3.;. Repeatedly execute the command x:=g(x); to generate successive approximations.

In Mathematica, make the assignments $f[x]:=x^3-30$, g[x]:=x-f[x]/f'[x], and x=3. Repeatedly execute the command x=g[x] to generate successive approximations.

13.
$$f(x)=2x^3-6x^2+3x+1 \Rightarrow f'(x)=6x^2-12x+3 \Rightarrow x_{n+1}=x_n - \frac{2x_n^3-6x_n^2+3x_n+1}{6x_n^2-12x_n+3}$$
. We need to find

approximations until they agree to six decimal places. $x_1 = 2.5 \Rightarrow x_2 \approx 2.285714$, $x_3 \approx 2.228824$, $x_4 \approx 2.224765$, $x_5 \approx 2.224745 \approx x_6$. So the root is 2.224745, to six decimal places.

15. $\sin x = x^2$, so $f(x) = \sin x - x^2 \Rightarrow f'(x) = \cos x - 2x \Rightarrow x_{n+1} = x_n - \frac{\sin x_n - x_n^2}{\cos x_n - 2x_n}$. From the figure, the

positive root of sin $x=x^2$ is near $1.x_1=1 \Rightarrow x_2 \approx 0.891396$, $x_3 \approx 0.876985$, $x_4 \approx 0.876726 \approx x_5$. So the positive root is 0.876726, to six decimal places.

29. $f(x)=x^3-3x+6 \Rightarrow f'(x)=3x^2-3$. If $x_1=1$, then $f'(x_1)=0$ and the tangent line used for approximating x_2 is horizontal. Attempting to find x_2 results in trying to divide by zero.

The volume of the silo, in terms of its radius, is $V(r) = \pi r^2(30) + \frac{1}{2} \left(\frac{4}{3}\pi r^3\right) = 30\pi r^2 + \frac{2}{3}\pi r^3$. From a graph of V, we see that V(r) = 15, 000 at $r \approx 11$ ft. Now we use Newton's method to solve the

equation V(r)-15, 000=0.
$$\frac{dV}{dr} = 60\pi r + 2\pi r^2$$
, so $r_{n+1} = r_n - \frac{30\pi r_n^2 + \frac{2}{3}\pi r_n^3 - 15,000}{60\pi r_n + 2\pi r_n^2}$. Taking $r_1 = 11$, we

get $r_2 \approx 11.2853$, $r_3 \approx 11.2807 \approx r_4$. So in order for the silo to hold 15, 000 ft³ of grain, its radius must be about 11.2807 ft.