1. (a) $C(0)$ represents the fixed costs of production, such as rent, utilities, machinery etc., which are incurred even when nothing is produced.
(b) The inflection point is the point at which $C{ }^{/}{ }^{\prime}(x)$ changes from negative to positive; that is, the marginal cost $C^{\prime}{ }^{\prime}(x)$ changes from decreasing to increasing. Thus, the marginal cost is minimized at the inflection point.
(c) The marginal cost function is $C^{\prime}(x)$. We graph it as in Example 1 in Section 3.2.

2. $C(x)=680+4 x+0.01 x^{2}, p(x)=12 \Rightarrow R(x)=x p(x)=12 x$. If the profit is maximum, then $R^{\prime}(x)=C^{\prime}(x)$ $\Rightarrow 12=4+0.02 x \Rightarrow 0.02 x=8 \Rightarrow x=400$. The profit is maximized if $P^{\prime /}(x)<0$, but since $P^{\prime \prime}(x)=R^{\prime /}{ }^{\prime}(x)-C^{\prime /}{ }^{\prime}(x)$, we can just check the condition $R^{\prime /}(x)<C^{\prime \prime}(x)$. Now $R^{\prime \prime}(x)=0<0.02=C{ }^{\prime}{ }^{\prime}(x)$, so $x=400$ gives a maximum.
3. (a) We are given that the demand function p is linear and $p(27,000)=10, p(33,000)=8$, so the slope is $\frac{10-8}{27,000-33,000}=-\frac{1}{3000}$ and an equation of the line is $y-10=\left(-\frac{1}{3000}\right)(x-27,000) \Rightarrow$ $y=p(x)=-\frac{1}{3000} x+19=19-(x / 3000)$.
(b) The revenue is $R(x)=x p(x)=19 x-\left(x^{2} / 3000\right) \Rightarrow R^{\prime}(x)=19-(x / 1500)=0$ when $x=28$, 500. Since $R^{\prime /}(x)=-1 / 1500<0$, the maximum revenue occurs when $x=28,500 \Rightarrow$ the price is $p(28$, $500)=\$ 9.50$.
