2. (a) The graph of a function can intersect a vertical asymptote in the sense that it can meet but not cross it.

The graph of a function can intersect a horizontal asymptote. It can even intersect its horizontal asymptote an infinite number of times.

(b) The graph of a function can have 0,1 , or 2 horizontal asymptotes. Representative examples are shown.

No horizontal asymptote

One horizontal asymptote

Two horizontal asymptotes
4.
(a) $\lim _{x \rightarrow \infty} g(x)=2$
(b) $\lim _{x \rightarrow-\infty} g(x)=-2$
(c) $\lim _{x \rightarrow 3} g(x)=\infty$
(d) $\lim g(x)=-\infty$
$x \rightarrow 0$
(e) $\lim g(x)=-\infty$

$$
x \rightarrow-2^{+}
$$

(f) Vertical: $x=-2, x=0, x=3$; Horizontal: $y=-2, y=2$
5. If $f(x)=x^{2} / 2^{x}$, then a calculator gives $f(0)=0, f(1)=0.5, f(2)=1, f(3)=1.125, f(4)=1$, $f(5)=0.78125, f(6)=0.5625, f(7)=0.3828125, f(8)=0.25, f(9)=0.158203125, f(10)=0.09765625$, $f(20) \approx 0.00038147, f(50) \approx 2.2204 \times 10^{-12}, f(100) \approx 7.8886 \times 10^{-27}$.
It appears that $\lim _{x \rightarrow \infty}\left(x^{2} / 2^{x}\right)=0$.
13. Divide both the numerator and denominator by x^{3} (the highest power of x that occurs in the denominator).
$\lim _{x \rightarrow \infty} \frac{x^{3}+5 x}{2 x^{3}-x^{2}+4}=\lim _{x \rightarrow \infty} \frac{\frac{x^{3}+5 x}{x^{3}}}{\frac{2 x^{3}-x^{2}+4}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{1+\frac{5}{x^{2}}}{2-\frac{1}{x}+\frac{4}{x^{3}}}=\frac{\lim _{x \rightarrow \infty}\left(1+\frac{5}{x^{2}}\right)}{\lim _{x \rightarrow \infty}\left(2-\frac{1}{x}+\frac{4}{x^{3}}\right)}$

$$
=\frac{\lim _{x \rightarrow \infty} 1+5 \lim _{x \rightarrow \infty} \frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 2-\lim _{x \rightarrow \infty} \frac{1}{x}+4 \lim _{x \rightarrow \infty} \frac{1}{x^{3}}}=\frac{1+5(0)}{2-0+4(0)}=\frac{1}{2}
$$

15. First, multiply the factors in the denominator. Then divide both the numerator and denominator by u^{4}.

$$
\begin{aligned}
\lim _{u \rightarrow \infty} \frac{4 u^{4}+5}{\left(u^{2}-2\right)\left(2 u^{2}-1\right)} & =\lim _{u \rightarrow \infty} \frac{4 u^{4}+5}{2 u^{4}-5 u^{2}+2}=\lim _{u \rightarrow \infty} \frac{\frac{4 u^{4}+5}{u^{4}}}{\frac{2 u^{4}-5 u^{2}+2}{u^{4}}}=\lim _{u \rightarrow \infty} \frac{4+\frac{5}{u^{4}}}{2-\frac{5}{u^{2}}+\frac{2}{u^{4}}} \\
& =\frac{\lim _{u \rightarrow \infty}\left(4+\frac{5}{u^{4}}\right)}{\lim _{u \rightarrow \infty}\left(2-\frac{5}{u^{2}}+\frac{2}{u^{4}}\right)}=\frac{\lim _{u \rightarrow \infty} 4+5 \lim _{u \rightarrow \infty} \frac{1}{u^{4}}}{\lim _{u \rightarrow \infty} 2-5 \lim _{u \rightarrow \infty} \frac{1}{u^{2}}+2 \lim _{u \rightarrow \infty} \frac{1}{u^{4}}}=\frac{4+5(0)}{2-5(0)+2(0)} \\
& =\frac{4}{2}=2
\end{aligned}
$$

17.

$\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}=\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-x} / x^{3}}{\left(x^{3}+1\right) / x^{3}}=\frac{\lim _{x \rightarrow \infty} \sqrt{\left(9 x^{6}-x\right) / x^{6}}}{\lim \left(1+1 / x^{3}\right)} \quad\left[\right.$ since $x^{3}=\sqrt{x^{6}}$ for $\left.x>0\right]$

$$
=\frac{\lim _{x \rightarrow \infty} \sqrt{9-1 / x^{5}}}{\lim 1+\lim \left(1 / x^{3}\right)}=\frac{\sqrt{\lim _{x \rightarrow \infty} 9-\lim _{x \rightarrow \infty}\left(1 / x^{5}\right)}}{1+0}
$$

$$
x \rightarrow \infty \quad x \rightarrow \infty
$$

$$
=\sqrt{9-0}=3
$$

21.

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+x}-3 x\right) & =\lim _{x \rightarrow \infty} \frac{\left(\sqrt{9 x^{2}+x}-3 x\right)\left(\sqrt{9 x^{2}+x}+3 x\right)}{\sqrt{9 x^{2}+x}+3 x}=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{9 x^{2}+x}\right)^{2}-(3 x)^{2}}{\sqrt{9 x^{2}+x}+3 x} \\
& =\lim _{x \rightarrow \infty} \frac{\left(9 x^{2}+x\right)-9 x^{2}}{\sqrt{9 x^{2}+x}+3 x}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{9 x^{2}+x}+3 x} \cdot \frac{1 / x}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{x / x}{\sqrt{9 x^{2} / x^{2}+x / x^{2}}+3 x / x}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{9+1 / x}+3}=\frac{1}{\sqrt{9}+3}=\frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$

31.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}} \quad & =\lim _{x \rightarrow \infty} \frac{\left(x+x^{3}+x^{5}\right) / x^{4}}{\left(1-x^{2}+x^{4}\right) / x^{4}} \text { [divide by the highest power of } x \text { in the denominator] } \\
& =\lim _{x \rightarrow \infty} \frac{1 / x^{3}+1 / x+x}{1 / x^{4}-1 / x^{2}+1}=\infty
\end{aligned}
$$

because $\left(1 / x^{3}+1 / x+x\right) \rightarrow \infty$ and $\left(1 / x^{4}-1 / x^{2}+1\right) \rightarrow 1$ as $x \rightarrow \infty$.
45. $\lim _{x \rightarrow \pm \infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow \pm \infty} \frac{1 / x}{1+1 / x^{2}}=\frac{0}{1+0}=0$, so $y=0$ is a horizontal asymptote.
$y^{\prime}=\frac{x^{2}+1-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}=0$ when $x= \pm 1$ and $y^{\prime}>0 \Leftrightarrow x^{2}<1 \Leftrightarrow-1<x<1$, so y is increasing on $(-1,1)$ and decreasing on $(-\infty,-1)$ and $(1, \infty)$.

$y^{\prime \prime}=\frac{\left(1+x^{2}\right)^{2}(-2 x)-\left(1-x^{2}\right) 2\left(x^{2}+1\right) 2 x}{\left(1+x^{2}\right)^{4}}=\frac{2 x\left(x^{2}-3\right)}{\left(1+x^{2}\right)^{3}}>0 \Leftrightarrow x>\sqrt{3}$ or $-\sqrt{3}<x<0$, so y is CU on
$(\sqrt{3}, \infty)$ and $(-\sqrt{3}, 0)$ and CD on $(-\infty,-\sqrt{3})$ and $(0, \sqrt{3})$.
51. First we plot the points which are known to be on the graph: $(2,-1)$ and $(0,0)$. We can also draw a short line segment of slope 0 at $x=2$, since we are given that $f^{\prime}(2)=0$. Now we know that $f^{\prime}(x)<0$ (that is, the function is decreasing) on $(0,2)$, and that $f^{\prime \prime}(x)<0$ on $(0,1)$ and $f^{\prime \prime}(x)>0$ on $(1,2)$. So we must join the points $(0,0)$ and $(2,-1)$ in

such a way that the curve is concave down on $(0,1)$ and concave up on $(1,2)$. The curve must be concave up and increasing on $(2,4)$ and concave down and increasing toward $y=1$ on $(4, \infty)$. Now we just need to reflect the curve in the y-axis, since we are given that f is an even function [the condition that $f(-x)=f(x)$ for all x].

