1. (a) f is increasing on $(0,6)$ and $(8,9)$.
(b) f is decreasing on $(6,8)$.
(c) f is concave upward on $(2,4)$ and $(7,9)$.
(d) f is concave downward on $(0,2)$ and $(4,7)$.
(e) The points of inflection are $(2,3),(4,4.5)$ and $(7,4)$ (where the concavity changes).
2. (a) Use the Increasing/Decreasing (I/D) Test.
(b) Use the Concavity Test.
(c) At any value of x where the concavity changes, we have an inflection point at ($\mathrm{x}, \mathrm{f}(x)$).
3. (a) $f^{\prime}(x)>0$ and f is increasing on $(0,1)$ and $(3,5) \cdot f^{\prime}(x)<0$ and f is decreasing on $(1,3)$ and $(5,6)$.
(b) Since $f^{\prime}(x)=0$ at $x=1$ and $x=5$ and f^{\prime} changes from positive to negative at both values, f changes from increasing to decreasing and has local maxima at $x=1$ and $x=5$. Since $f^{\prime}(x)=0$ at $x=3$ and f^{\prime} changes from negative to positive there, f changes from decreasing to increasing and has a local minimum at $x=3$.
4. There is an inflection point at $x=1$ because $f^{\prime}{ }^{\prime}(x)$ changes from negative to positive there, and so the graph of f changes from concave downward to concave upward. There is an inflection point at $x=7$ because $f^{\prime \prime}(x)$ changes from positive to negative there, and so the graph of f changes from concave upward to concave downward.
5. The function must be always decreasing and concave downward.

6. (a) $f(x)=\frac{x^{2}}{x^{2}+3} \Rightarrow f^{\prime}(x)=\frac{\left(x^{2}+3\right)(2 x)-x^{2}(2 x)}{\left(x^{2}+3\right)^{2}}=\frac{6 x}{\left(x^{2}+3\right)^{2}}$. The denominator is positive so the sign of $f^{\prime}(x)$ is determined by the sign of x. Thus, $f^{\prime}(x)>0 \Leftrightarrow x>0$ and $f^{\prime}(x)<0 \Leftrightarrow x<0$. So f is increasing on $(0, \infty)$ and f is decreasing on $(-\infty, 0)$.
(b) f changes from decreasing to increasing at $x=0$. Thus, $f(0)=0$ is a local minimum value.
(c)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{x^{2}+3^{2}(6)-6 x \cdot 2\left(x^{2}+3\right)(2 x)}{\left[\left(x^{2}+3\right)^{2}\right]^{2}}=\frac{6\left(x^{2}+3\right)\left[x^{2}+3-4 x^{2}\right]}{\left(x^{2}+3\right)^{4}} \\
& =\frac{6\left(3-3 x^{2}\right)}{\left(x^{2}+3\right)^{3}}=\frac{-18(x+1)(x-1)}{\left(x^{2}+3\right)^{3}} .
\end{aligned}
$$

$f^{\prime \prime}(x)>0 \Leftrightarrow-1<x<1$ and $f^{\prime \prime}{ }^{\prime}(x)<0 \Leftrightarrow x<-1$ or $x>1$. Thus, f is concave upward on $(-1,1)$ and concave downward on $(-\infty,-1)$ and $(1, \infty)$. There are inflection points at $\left(\pm 1, \frac{1}{4}\right)$.
15. (a) $f(x)=x-2 \sin x$ on $(0,3 \pi) \Rightarrow f^{\prime}(x)=1-2 \cos x . f^{\prime}(x)>0 \Leftrightarrow 1-2 \cos x>0 \Leftrightarrow \cos x<\frac{1}{2} \Leftrightarrow \frac{\pi}{3}<x<\frac{5 \pi}{3}$ or $\frac{7 \pi}{3}<x<3 \pi . f^{\prime}(x)<0 \Leftrightarrow \cos x>\frac{1}{2} \Leftrightarrow 0<x<\frac{\pi}{3}$ or $\frac{5 \pi}{3}<x<\frac{7 \pi}{3}$. So f is increasing on $\left(\frac{\pi}{3}, \frac{5 \pi}{3}\right)$ and $\left(\frac{7 \pi}{3}, 3 \pi\right)$, and f is decreasing on $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{5 \pi}{3}, \frac{7 \pi}{3}\right)$.
(b) f changes from increasing to decreasing at $x=\frac{5 \pi}{3}$, and from decreasing to increasing at $x=\frac{\pi}{3}$ and at $x=\frac{7 \pi}{3}$. Thus, $f\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}+\sqrt{3} \approx 6.97$ is a local maximum value and $f\left(\frac{\pi}{3}\right)=\frac{\pi}{3}-\sqrt{3} \approx-0.68$ and $f\left(\frac{7 \pi}{3}\right)=\frac{7 \pi}{3}-\sqrt{3} \approx 5.60$ are local minimum values.
(c) $f^{\prime \prime}(x)=2 \sin x>0 \Leftrightarrow 0<x<\pi$ and $2 \pi<x<3 \pi, f^{\prime \prime}(x)<0 \Leftrightarrow \pi<x<2 \pi$. Thus, f is concave upward on $(0, \pi)$ and $(2 \pi, 3 \pi)$, and f is concave downward on $(\pi, 2 \pi)$. There are inflection points at (π, π) and $(2 \pi, 2 \pi)$.
23. $f^{\prime}(0)=f^{\prime}(2)=f^{\prime}(4)=0 \Leftrightarrow$ horizontal tangents at $x=0,2,4 . f^{\prime}(x)>0$ if $x<0$ or $2<x<4 \Rightarrow f$ is increasing on $(-\infty, 0)$ and $(2,4) \cdot f^{\prime}(x)<0$ if $0<x<2$ or $x>4 \Rightarrow f$ is decreasing on $(0,2)$ and $(4, \infty)$. $f^{\prime \prime}(x)>0$ if $1<x<3 \Rightarrow f$ is concave upward on $(1,3) . f^{\prime \prime}(x)<0$ if $x<1$ or $x>3 \Rightarrow f$ is concave downward on $(-\infty, 1)$ and $(3, \infty)$. There are inflection points when $x=1$ and 3 .

27. (a) f is increasing where f^{\prime} is positive, that is, on $(0,2),(4,6)$, and $(8, \infty)$; and decreasing where f^{\prime} is negative, that is, on $(2,4)$ and $(6,8)$.
(b) f has local maxima where f^{\prime} changes from positive to negative, at $x=2$ and at $x=6$, and local minima where f^{\prime} changes from negative to positive, at $x=4$ and at $x=8$.
(c) f is concave upward (CU) where f^{\prime} is increasing, that is, on $(3,6)$ and $(6, \infty)$, and concave downward (CD) where f^{\prime} is decreasing, that is, on $(0,3)$.
(d) There is a point of in.ection where f changes from being CD to being CU , that is, at $x=3$.
(e)

33. (a) $h(x)=3 x^{5}-5 x^{3}+3 \Rightarrow h^{\prime}(x)=15 x^{4}-15 x^{2}=15 x^{2}\left(x^{2}-1\right)=0$ when $x=0, \pm 1$. Since $15 x^{2}$ is nonnegative, $h^{\prime}(x)>0 \Leftrightarrow x^{2}>1 \Leftrightarrow|x|>1 \Leftrightarrow x>1$ or $x<-1$, so h is increasing on $(-\infty,-1)$ and $(1, \infty)$ and decreasing on $(-1,1)$, with a horizontal tangent at $x=0$.
(b) Local maximum value $h(-1)=5$, local minimum value $h(1)=1$
(c)

$$
\begin{aligned}
h^{\prime \prime}(x) & =60 x^{3}-30 x=30 x\left(2 x^{2}-1\right) \\
& =60 x\left(x+\frac{1}{\sqrt{2}}\right)\left(x-\frac{1}{\sqrt{2}}\right) \Rightarrow
\end{aligned}
$$

$h^{\prime \prime}(x)>0$ when $x>\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}<x<0$, so h is CU on $\left(-\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{2}}, \infty\right)$ and CD on $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$ and $\left(0, \frac{1}{\sqrt{2}}\right)$. Inflection points at $(0,3)$ and $\left(\pm \frac{1}{\sqrt{2}}, 3 \mp \frac{7}{8} \sqrt{2}\right)$ [about $(-0.71,4.24)$ and $(0.71,1.76)]$.
(d)

35. (a) $A(x)=x \sqrt{x+3} \Rightarrow A^{\prime}(x)=x \cdot \frac{1}{2}(x+3)^{-1 / 2}+\sqrt{x+3} \cdot 1=\frac{x}{2 \sqrt{x+3}}+\sqrt{x+3}=\frac{x+2(x+3)}{2 \sqrt{x+3}}=\frac{3 x+6}{2 \sqrt{x+3}}$.

The domain of A is $[-3, \infty) \cdot A^{\prime}(x)>0$ for $x>-2$ and $A^{\prime}(x)<0$ for $-3<x<-2$, so A is increasing on $(-2, \infty)$ and decreasing on $(-3,-2)$.
(b) $A(-2)=-2$ is a local minimum value.
(c) $A^{\prime /}(x)=\frac{2 \sqrt{x+3} \cdot 3-(3 x+6) \cdot \frac{1}{\sqrt{x+3}}}{(2 \sqrt{x+3})^{2}}=\frac{6(x+3)-(3 x+6)}{4(x+3)^{3 / 2}}=\frac{3 x+12}{4(x+3)^{3 / 2}}=\frac{3(x+4)}{4(x+3)^{3 / 2}} A^{\prime \prime}(x)>0$ for all
$x>-3$, so A is concave upward on $(-3, \infty)$. There is no inflection point.
(d)

