2.
$$f(x) = x^3 - 3x^2 + 2x + 5$$
, [0,2]. *f* is continuous on [0,2] and differentiable on (0,2). Also,
 $f(0) = 5 = f(2) \cdot f'(c) = 0 \Leftrightarrow 3c^2 - 6c + 2 = 0 \Leftrightarrow c = \frac{6 \pm \sqrt{36 - 24}}{6} = 1 \pm \frac{1}{3}\sqrt{3}$, both in (0,2).

9.
(a),
(b) The equation of the secant line is
$$y-5=\frac{8.5-5}{8-1}(x-1) \Leftrightarrow y=\frac{1}{2}x+\frac{9}{2}$$
.
(c) $f(x)=x+4/x \Rightarrow f'(x)=1-4/x^2$.
So $f'(c)=\frac{1}{2} \Rightarrow c^2=8 \Rightarrow c=2\sqrt{2}$, and $f(c)=2\sqrt{2}+\frac{4}{2\sqrt{2}}=3\sqrt{2}$. Thus, an equation of the tangent line is $y-3\sqrt{2}=\frac{1}{2}(x-2\sqrt{2}) \Leftrightarrow y=\frac{1}{2}x+2\sqrt{2}$.

11. $f(x)=3x^2+2x+5$, [-1,1]. f is continuous on [-1,1] and differentiable on (-1,1) since polynomials are continuous and differentiable on R. $f'(c)=\frac{f(b)-f(a)}{b-a}$ \Leftrightarrow $6c+2=\frac{f(1)-f(-1)}{1-(-1)}=\frac{10-6}{2}=2$ \Leftrightarrow 6c=0 \Leftrightarrow c=0, which is in (-1,1).

14.
$$f(x) = \frac{x}{x+2}$$
, [1,4]. *f* is continuous on [1,4] and differentiable on (1,4). $f'(c) = \frac{f(b) - f(a)}{b - a} \Leftrightarrow \frac{2}{(c+2)^2} = \frac{\frac{2}{3} - \frac{1}{3}}{4 - 1} \Leftrightarrow (c+2)^2 = 18 \Leftrightarrow c = -2 \pm 3\sqrt{2} \cdot -2 + 3\sqrt{2} \approx 2.24$ is in (1,4).

17. Let $f(x)=1+2x+x^3+4x^5$. Then f(-1)=-6<0 and f(0)=1>0. Since f is a polynomial, it is continuous, so the Intermediate Value Theorem says that there is a number c between -1 and 0 such that f(c)=0. Thus, the given equation has a real root. Suppose the equation has distinct real roots a and b with a < b. Then f(a)=f(b)=0. Since f is a polynomial, it is differentiable on (a,b) and continuous on [a,b]. By Rolle's Theorem, there is a number r in (a,b) such that f'(r)=0. But $f'(x)=2+3x^2+20x^4 \ge 2$ for all x, so f'(x) can never be 0. This contradiction shows that the equation can't have two distinct real roots.