2. $f(x)=x^{3}-3 x^{2}+2 x+5,[0,2] . f$ is continuous on $[0,2]$ and differentiable on $(0,2)$. Also, $f(0)=5=f(2) \cdot f^{\prime}(c)=0 \Leftrightarrow 3 c^{2}-6 c+2=0 \Leftrightarrow c=\frac{6 \pm \sqrt{36-24}}{6}=1 \pm \frac{1}{3} \sqrt{3}$, both in $(0,2)$.
3.

(b), The equation of the secant line is $y-5=\frac{8.5-5}{8-1}(x-1) \Leftrightarrow y=\frac{1}{2} x+\frac{9}{2}$.

(c)
$f(x)=x+4 / x \Rightarrow f^{\prime}(x)=1-4 / x^{2}$.
So $f^{\prime}(c)=\frac{1}{2} \Rightarrow c^{2}=8 \Rightarrow c=2 \sqrt{2}$, and $f(c)=2 \sqrt{2}+\frac{4}{2 \sqrt{2}}=3 \sqrt{2}$. Thus, an equation of the tangent line is $y-3 \sqrt{2}=\frac{1}{2}(x-2 \sqrt{2}) \Leftrightarrow y=\frac{1}{2} x+2 \sqrt{2}$.

11. $f(x)=3 x^{2}+2 x+5,[-1,1] \cdot f$ is continuous on $[-1,1]$ and differentiable on $(-1,1)$ since polynomials are continuous and differentiable on $R . f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \Leftrightarrow 6 c+2=\frac{f(1)-f(-1)}{1-(-1)}=\frac{10-6}{2}=2 \Leftrightarrow 6 c=0 \Leftrightarrow$ $c=0$, which is in $(-1,1)$.
14. $f(x)=\frac{x}{x+2},[1,4] \cdot f$ is continuous on $[1,4]$ and differentiable on $(1,4) \cdot f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \Leftrightarrow$
$\frac{2}{(c+2)^{2}}=\frac{\frac{2}{3}-\frac{1}{3}}{4-1} \Leftrightarrow(c+2)^{2}=18 \Leftrightarrow c=-2 \pm 3 \sqrt{2} \cdot-2+3 \sqrt{2} \approx 2.24$ is in $(1,4)$.
17. Let $f(x)=1+2 x+x^{3}+4 x^{5}$. Then $f(-1)=-6<0$ and $f(0)=1>0$. Since f is a polynomial, it is continuous, so the Intermediate Value Theorem says that there is a number c between -1 and 0 such that $f(c)=0$. Thus, the given equation has a real root. Suppose the equation has distinct real roots a and b with $a<b$. Then $f(a)=f(b)=0$. Since f is a polynomial, it is differentiable on (a,b) and continuous on [a,b]. By Rolle's Theorem, there is a number r in (a, b) such that $f^{\prime}(r)=0$. But $f^{\prime}(x)=2+3 x^{2}+20 x^{4} \geq 2$ for all x, so $f^{\prime}(x)$ can never be 0 . This contradiction shows that the equation can't have two distinct real roots. Hence, it has exactly one real root.

