3. $f(x)=1-x^{3}+5 x^{5}-3 x^{7} \Rightarrow F(x)=x-\frac{x^{3+1}}{3+1}+5 \frac{x^{5+1}}{5+1}-3 \frac{x^{7+1}}{7+1}+C=x-\frac{1}{4} x^{4}+\frac{5}{6} x^{6}-\frac{3}{8} x^{8}+C$
4. $f(x)=5 x^{1 / 4}-7 x^{3 / 4} \Rightarrow F(x)=5 \frac{x^{1 / 4+1}}{\frac{1}{4}+1}-7 \frac{x^{3 / 4+1}}{\frac{3}{4}+1}+C=5 \frac{x^{5 / 4}}{5 / 4}-7 \frac{x^{7 / 4}}{7 / 4}+C=4 x^{5 / 4}-4 x^{7 / 4}+C$
5. $h(x)=x^{3}+5 \sin x \Rightarrow H(x)=\frac{1}{4} x^{4}+5(-\cos x)+C=\frac{1}{4} x^{4}-5 \cos x+C$
6. $f(t)=4 \sqrt{t}-\sec t \tan t \Rightarrow F(t)=\frac{4}{3 / 2} t^{3 / 2}-\sec t+C=\frac{8}{3} t^{3 / 2}-\sec t+C_{n}$ on the interval $\left(n \pi-\frac{\pi}{2}, \mathrm{n} \pi+\frac{\pi}{2}\right)$.
7. $f^{\prime \prime}(x)=6 x+12 x^{2} \Rightarrow f^{\prime}(x)=6 \cdot \frac{x^{2}}{2}+12 \cdot \frac{x^{3}}{3}+C=3 x^{2}+4 x^{3}+C \Rightarrow$
$f(x)=3 \cdot \frac{x^{3}}{3}+4 \cdot \frac{x^{4}}{4}+C x+D=x^{3}+x^{4}+C x+D \quad[C$ and D are just arbitrary constants $]$
8. $f^{\prime}(x)=1-6 x \Rightarrow f(x)=x-3 x^{2}+C . f(0)=C$ and $f(0)=8 \Rightarrow C=8$, so $f(x)=x-3 x^{2}+8$.
9. $f^{\prime \prime}(x)=24 x^{2}+2 x+10 \Rightarrow f^{\prime}(x)=8 x^{3}+x^{2}+10 x+C \cdot f^{\prime}(1)=8+1+10+C$ and $f^{\prime}(1)=-3 \Rightarrow 19+C=-3 \Rightarrow$ $C=-22$, so $f^{\prime}(x)=8 x^{3}+x^{2}+10 x-22$ and hence, $f(x)=2 x^{4}+\frac{1}{3} x^{3}+5 x^{2}-22 x+D . f(1)=2+\frac{1}{3}+5-22+D$ and $f(1)=5 \Rightarrow D=22-\frac{7}{3}=\frac{59}{3}$, so $f(x)=2 x^{4}+\frac{1}{3} x^{3}+5 x^{2}-22 x+\frac{59}{3}$.
10. $f^{\prime \prime}(\theta)=\sin \theta+\cos \theta \Rightarrow f^{\prime}(\theta)=-\cos \theta+\sin \theta+C \cdot f^{\prime}(0)=-1+C$ and $f^{\prime}(0)=4 \Rightarrow C=5$, so $f^{\prime}(\theta)=-\cos \theta+\sin \theta+5$ and hence, $f(\theta)=-\sin \theta-\cos \theta+5 \theta+D \cdot f(0)=-1+D$ and $f(0)=3 \Rightarrow D=4$, so $f(\theta)=-\sin \theta-\cos \theta+5 \theta+4$.
11. $f^{\prime \prime}(x)=2+\cos x \Rightarrow f^{\prime}(x)=2 x+\sin x+C \Rightarrow f(x)=x^{2}-\cos x+C x+D . f(0)=-1+D$ and $f(0)=-1 \Rightarrow D=0$. $f\left(\frac{\pi}{2}\right)=\pi^{2} / 4+\left(\frac{\pi}{2}\right) C$ and $f\left(\frac{\pi}{2}\right)=0 \Rightarrow\left(\frac{\pi}{2}\right) C=-\pi^{2} / 4 \Rightarrow C=-\frac{\pi}{2}$, so $f(x)=x^{2}-\cos x-\left(\frac{\pi}{2}\right) x$.
12. b is the antiderivative of f. For small x, f is negative, so the graph of its antiderivative must be decreasing. But both a and c are increasing for small x, so only b can be f 's antiderivative. Also, f is positive where b is increasing, which supports our conclusion.
13. The graph of F will have a minimum at 0 and a maximum at 2 , since $f=F^{\prime}$ goes from negative to positive at $x=0$, and from positive to negative at $x=2$.

14.

$f^{\prime}(x)=\left\{\begin{array}{ll}2 & \text { if } 0 \leq \mathrm{x}<1 \\ 1 & \text { if } 1<\mathrm{x}<2 \\ -1 & \text { if } 2<\mathrm{x} \leq 3\end{array} \Rightarrow f(x)=\left\{\begin{array}{ll}2 \mathrm{x}+\mathrm{C} & \text { if } 0 \leq \mathrm{x}<1 \\ \mathrm{x}+\mathrm{D} & \text { if } 1<\mathrm{x}<2 \\ -\mathrm{x}+\mathrm{E} & \text { if } 2<\mathrm{x} \leq 3\end{array} \quad f(0)=-1 \Rightarrow 2(0)+C=-1 \Rightarrow C=-1\right.\right.$.
Starting at the point $(0,-1)$ and moving to the right on a line with slope 2 gets us to the point $(1,1)$. The slope for $1<x<2$ is 1 , so we get to the point $(2,2)$. Here we have used the fact that f is continuous. We can include the point $x=1$ on either the first or the second part of f. The line connecting $(1,1)$ to $(2,2)$ is $y=x$, so $D=0$. The slope for $2<x \leq 3$ is -1 , so we get to $(3,1) . f(3)=1 \Rightarrow$ $-3+E=1 \Rightarrow E=4$. Thus,

$$
f(x)= \begin{cases}2 \mathrm{x}-1 & \text { if } 0 \leq \mathrm{x} \leq 1 \\ \mathrm{x} & \text { if } 1<\mathrm{x}<2 \\ -\mathrm{x}+4 & \text { if } 2 \leq \mathrm{x} \leq 3\end{cases}
$$

Note that $f^{\prime}(x)$ does not exist at $x=1$ or at $x=2$.
55. $a(t)=v^{\prime}(t)=t-2 \Rightarrow v(t)=\frac{1}{2} t^{2}-2 t+C . v(0)=C$ and $v(0)=3 \Rightarrow C=3$, so $v(t)=\frac{1}{2} t^{2}-2 t+3$ and
$s(t)=\frac{1}{6} t^{3}-t^{2}+3 t+D . s(0)=D$ and $s(0)=1 \Rightarrow D=1$, and $s(t)=\frac{1}{6} t^{3}-t^{2}+3 t+1$.
63. Using Exercise with $a=-32, v_{0}=0$, and $s_{0}=h$ (the height of the cliff), we know that the height at time t is $s(t)=-16 t^{2}+h \cdot v(t)=s^{\prime}(t)=-32 t$ and $v(t)=-120 \Rightarrow-32 t=-120 \Rightarrow t=3.75$, so $0=s(3.75)=-16(3.75)^{2}+h \Rightarrow h=16(3.75)^{2}=225 \mathrm{ft}$.
68. $v^{\prime}(t)=a(t)=-22$. The initial velocity is $50 \mathrm{mi} / \mathrm{h}=\frac{50 \cdot 5280}{3600}=\frac{220}{3} \mathrm{ft} / \mathrm{s}$, so $v(t)=-22 t+\frac{220}{3}$. The car stops when $v(t)=0 \Leftrightarrow t=\frac{220}{3 \cdot 22}=\frac{10}{3}$. Since $s(t)=-11 t^{2}+\frac{220}{3} t$, the distance covered is $s\left(\frac{10}{3}\right)=-11\left(\frac{10}{3}\right)^{2}+\frac{220}{3} \cdot \frac{10}{3}=\frac{1100}{9}=122 . \overline{2} \mathrm{ft}$.
69. $a(t)=k$, the initial velocity is $30 \mathrm{mi} / \mathrm{h}=30 \cdot \frac{5280}{3600}=44 \mathrm{ft} / \mathrm{s}$, and the final velocity (after 5 seconds) is $50 \mathrm{mi} / \mathrm{h}=50 \cdot \frac{5280}{3600}=\frac{220}{3} \mathrm{ft} / \mathrm{s}$. So $v(t)=k t+C$ and $v(0)=44 \Rightarrow C=44$. Thus, $v(t)=k t+44$ $\Rightarrow v(5)=5 k+44$. But $v(5)=\frac{220}{3}$, so $5 k+44=\frac{220}{3} \Rightarrow 5 k=\frac{88}{3} \Rightarrow k=\frac{88}{15} \approx 5.87 \mathrm{ft} / \mathrm{s}^{2}$.

