1. $V=x^{3} \Rightarrow \frac{d V}{d t}=\frac{d V}{d x} \frac{d x}{d t}=3 x^{2} \frac{d x}{d t}$
2. $y=x^{3}+2 x \Rightarrow \frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\left(3 x^{2}+2\right)(5)=5\left(3 x^{2}+2\right)$. When $x=2, \frac{d y}{d t}=5(14)=70$.
3. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of $500 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. If we let t be time (in hours) and x be the horizontal distance traveled by the plane (in mi), then we are given that $d x / d t=500 \mathrm{mi} / \mathrm{h}$.
(b) Unknown: the rate at which the distance from the plane to the station is increasing when it is 2 mi from the station. If we let y be the distance from the plane to the station, then we want to find $d y / d t$ when $y=2 \mathrm{mi}$.
(c)

(d) By the Pythagorean Theorem, $y^{2}=x^{2}+1 \Rightarrow 2 y(d y / d t)=2 x(d x / d t)$.
(e) $\frac{d y}{d t}=\frac{x}{y} \frac{d x}{d t}=\frac{x}{y}(500)$. Since $y^{2}=x^{2}+1$, when $y=2, x=\sqrt{3}$, so $\frac{d y}{d t}=\frac{\sqrt{3}}{2}(500)=250 \sqrt{3} \approx 433 \mathrm{mi} / \mathrm{h}$.
4. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at $35 \mathrm{~km} / \mathrm{h}$, and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. If we let t be time (in hours), x be the distance traveled by ship A (in km), and y be the distance traveled by ship B (in km), then we are given that $d x / d t=35 \mathrm{~km} / \mathrm{h}$ and $d y / d t=25 \mathrm{~km} / \mathrm{h}$.
(b) Unknown: the rate at which the distance between the ships is changing at 4:00 P.M. If we let z be the distance between the ships, then we want to find $d z / d t$ when $t=4 \mathrm{~h}$.
(c)

(d) $z^{2}=(150-x)^{2}+y^{2} \Rightarrow 2 z \frac{d z}{d t}=2(150-x)\left(-\frac{d x}{d t}\right)+2 y \frac{d y}{d t}$
(e) At 4:00 P.M., $x=4(35)=140$ and $y=4(25)=100 \Rightarrow z=\sqrt{(150-140)^{2}+100^{2}}=\sqrt{10,100}$. So $\frac{d z}{d t}=\frac{1}{z}\left[(x-150) \frac{d x}{d t}+y \frac{d y}{d t}\right]=\frac{-10(35)+100(25)}{\sqrt{10,100}}=\frac{215}{\sqrt{101}} \approx 21.4 \mathrm{~km} / \mathrm{h}$.
5.

We are given that $\frac{d x}{d t}=60 \mathrm{mi} / \mathrm{h}$ and $\frac{d y}{d t}=25 \mathrm{mi} / \mathrm{h} . z^{2}=x^{2}+y^{2} \Rightarrow 2 z \frac{d z}{d t}=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \Rightarrow$ $z \frac{d z}{d t}=x \frac{d x}{d t}+y \frac{d y}{d t} \Rightarrow \frac{d z}{d t}=\frac{1}{z}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right)$.
After 2 hours, $x=2(60)=120$ and $y=2(25)=50 \Rightarrow z=\sqrt{120^{2}+50^{2}}=130$, so

$$
\frac{d z}{d t}=\frac{1}{z}\left(x \frac{d x}{d t}+y \frac{d y}{d t}\right)=\frac{120(60)+50(25)}{130}=65 \mathrm{mi} / \mathrm{h} .
$$

13.

We are given that $\frac{d x}{d t}=4 \mathrm{ft} / \mathrm{s}$ and $\frac{d y}{d t}=5 \mathrm{ft} / \mathrm{s} . z^{2}=(x+y)^{2}+500^{2} \Rightarrow 2 z \frac{d z}{d t}=2(x+y)\left(\frac{d x}{d t}+\frac{d y}{d t}\right) \cdot 15$
minutes after the woman starts, we have $x=(4 \mathrm{ft} / \mathrm{s})(20 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=4800 \mathrm{ft}$ and $y=5 \cdot 15 \cdot 60=4500 \Rightarrow$
$z=\sqrt{(4800+4500)^{2}+500^{2}}=\sqrt{86,740,000}$, so
$\frac{d z}{d t}=\frac{x+y}{z}\left(\frac{d x}{d t}+\frac{d y}{d t}\right)=\frac{4800+4500}{\sqrt{86,740,000}}(4+5)=\frac{837}{\sqrt{8674}} \approx 8.99 \mathrm{ft} / \mathrm{s} \mathrm{}$.
17.

We are given that $\frac{d x}{d t}=35 \mathrm{~km} / \mathrm{h}$ and $\frac{d y}{d t}=25 \mathrm{~km} / \mathrm{h} . z^{2}=(x+y)^{2}+100^{2} \Rightarrow 2 z \frac{d z}{d t}=2(x+y)\left(\frac{d x}{d t}+\frac{d y}{d t}\right)$.
At 4:00 P.M., $x=4(35)=140$ and $y=4(25)=100 \Rightarrow z=\sqrt{(140+100)^{2}+100^{2}}=\sqrt{67,600}=260$, so

$$
\frac{d z}{d t}=\frac{x+y}{z}\left(\frac{d x}{d t}+\frac{d y}{d t}\right)=\frac{140+100}{260}(35+25)=\frac{720}{13} \approx 55.4 \mathrm{~km} / \mathrm{h} .
$$

31.

We are given that $\frac{d x}{d t}=2 \mathrm{ft} / \mathrm{s} . \sin \theta=\frac{x}{10} \Rightarrow x=10 \sin \theta \Rightarrow \frac{d x}{d t}=10 \cos \theta \frac{d \theta}{d t}$. When $\theta=\frac{\pi}{4}$, $2=10 \cos \frac{\pi}{4} \frac{d \theta}{d t} \Rightarrow \frac{d \theta}{d t}=\frac{2}{10(1 / \sqrt{2})}=\frac{\sqrt{2}}{5} \mathrm{rad} / \mathrm{s}$.

