1. (a) $s=f(t)=t^{2}-10 t+12 \Rightarrow v(t)=f^{\prime}(t)=2 t-10$
(b) $v(3)=2(3)-10=-4 \mathrm{ft} / \mathrm{s}$
(c) The particle is at rest when $v(t)=0 \Leftrightarrow 2 t-10=0 \Leftrightarrow t=5 \mathrm{~s}$.
(d) The particle is moving in the positive direction when $v(t)>0 \Leftrightarrow 2 t-10>0 \Leftrightarrow 2 t>10 \Leftrightarrow t>5$.
(e) Since the particle is moving in the positive direction and in the negative direction, we need to calculate the distance traveled in the intervals [0,5] and [5,8] separately. $|f(5)-f(0)|=|-13-12|=25 \mathrm{ft}$ and $|f(8)-f(5)|=\mid\{-4-(-13) \mid=9 \mathrm{ft}$. The total distance traveled during the first 8 s is $25+9=34 \mathrm{ft}$.

2. (a) $s=f(t)=t^{3}-9 t^{2}+15 t+10 \Rightarrow v(t)=f^{\prime}(t)=3 t^{2}-18 t+15=3(t-1)(t-5)$
(b) $v(3)=3(2)(-2)=-12 \mathrm{ft} / \mathrm{s}$
(c) $v(t)=0 \Leftrightarrow t=1 \mathrm{~s}$ or 5 s
(d) $v(t)>0 \Leftrightarrow 0 \leq t<1$ or $t>5$
(e) $|f(1)-f(0)|=|17-10|=7,|f(5)-f(1)|=|-15-17|=32$, and $|f(8)-f(5)|=|66-(-15)|=81$. Total distance $=7+32+81=120 \mathrm{ft}$.
(f)

3. (a) At maximum height the velocity of the ball is $0 \mathrm{ft} / \mathrm{s} . v(t)=s^{\prime}(t)=80-32 t=0 \Leftrightarrow 32 t=80 \Leftrightarrow t=\frac{5}{2}$.

So the maximum height is $s\left(\frac{5}{2}\right)=80\left(\frac{5}{2}\right)-16\left(\frac{5}{2}\right)^{2}=200-100=100 \mathrm{ft}$.
(b) $s(t)=80 t-16 t^{2}=96 \Leftrightarrow 16 t^{2}-80 t+96=0 \Leftrightarrow 16\left(t^{2}-5 t+6\right)=0 \Leftrightarrow 16(t-3)(t-2)=0$.

So the ball has a height of 96 ft on the way up at $t=2$ and on the way down at $t=3$. At these times the velocities are $v(2)=80-32(2)=16 \mathrm{ft} / \mathrm{s}$ and $v(3)=80-32(3)=-16 \mathrm{ft} / \mathrm{s}$, respectively.
21. (a) To find the rate of change of volume with respect to pressure, we first solve for V in terms of P.
$P V=C \Rightarrow V=\frac{C}{P} \Rightarrow \frac{d V}{d P}=-\frac{C}{P^{2}}$.
(b) From the formula for $d V / d P$ in part (a), we see that as P increases, the absolute value of $d V / d P$ decreases. Thus, the volume is decreasing more rapidly at the beginning.
(c) $\beta=-\frac{1}{V} \frac{d V}{d P}=-\frac{1}{V}\left(-\frac{C}{P^{2}}\right)=\frac{C}{(P V) P}=\frac{C}{C P}=\frac{1}{P}$
31. (a) $A(x)=\frac{p(x)}{x} \Rightarrow A^{\prime}(x)=\frac{x p^{\prime}(x)-p(x) \cdot 1}{x^{2}}=\frac{x p^{\prime}(x)-p(x)}{x^{2}} . A^{\prime}(x)>0 \Rightarrow A(x)$ is increasing; that is, the average productivity increases as the size of the workforce increases.
(b) $p^{\prime}(x)$ is greater than the average productivity $\Rightarrow p^{\prime}(x)>A(x) \Rightarrow p^{\prime}(x)>\frac{p(x)}{x} \Rightarrow$ $x p^{\prime}(x)>p(x) \Rightarrow x p^{\prime}(x)-p(x)>0 \Rightarrow \frac{x p^{\prime}(x)-p(x)}{x^{2}}>0 \Rightarrow A^{\prime}(x)>0$.

