6. $g(x)=5 x^{8}-2 x^{5}+6 \Rightarrow g^{\prime}(x)=5\left(8 x^{8-1}\right)-2\left(5 x^{5-1}\right)+0=40 x^{7}-10 x^{4}$
7. $V(r)=\frac{4}{3} \pi r^{3} \Rightarrow V^{\prime}(r)=\frac{4}{3} \pi\left(3 r^{2}\right)=4 \pi r^{2}$
8. $y=x^{-2 / 5} \Rightarrow y^{\prime}=-\frac{2}{5} x^{(-2 / 5)-1}=-\frac{2}{5} x^{-7 / 5}=-\frac{2}{5 x^{7 / 5}}$
9. $u=\sqrt[3]{t^{2}}+2 \sqrt{t^{3}}=t^{2 / 3}+2 t^{3 / 2} \Rightarrow u^{\prime}=\frac{2}{3} t^{-1 / 3}+2\left(\frac{3}{2}\right) t^{1 / 2}=\frac{2}{3 \sqrt[3]{t}}+3 \sqrt{t}$
10. Product Rule:

$$
\begin{aligned}
& y=\left(x^{2}+1\right)\left(x^{3}+1\right) \Rightarrow \\
& y^{\prime}=\left(x^{2}+1\right)\left(3 x^{2}\right)+\left(x^{3}+1\right)(2 x)=3 x^{4}+3 x^{2}+2 x^{4}+2 x=5 x^{4}+3 x^{2}+2 x
\end{aligned}
$$

Multiplying first: $y=\left(x^{2}+1\right)\left(x^{3}+1\right)=x^{5}+x^{3}+x^{2}+1 \Rightarrow y^{\prime}=5 x^{4}+3 x^{2}+2 x$ (equivalent).
26. $y=\sqrt{x}(x-1)=x^{3 / 2}-x^{1 / 2} \Rightarrow y^{\prime}=\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2}=\frac{1}{2} x^{-1 / 2}(3 x-1)\left[\right.$ factor out $\frac{1}{2} x^{-1 / 2}$] or $y^{\prime}=\frac{3 x-1}{2 \sqrt{x}}$.
27. $g(x)=\frac{3 x-1}{2 x+1} \stackrel{\mathrm{QR}}{\Rightarrow} g^{\prime}(x)=\frac{(2 x+1)(3)-(3 x-1)(2)}{(2 x+1)^{2}}=\frac{6 x+3-6 x+2}{(2 x+1)^{2}}=\frac{5}{(2 x+1)^{2}}$
37. $y=\frac{r^{2}}{1+\sqrt{r}} \Rightarrow$ $y^{\prime}=\frac{(1+\sqrt{r})(2 r)-r^{2}\left(\frac{1}{2} r^{-1 / 2}\right)}{(1+\sqrt{r})^{2}}=\frac{2 r+2 r^{3 / 2}-\frac{1}{2} r^{3 / 2}}{(1+\sqrt{r})^{2}}=\frac{2 r+\frac{3}{2} r^{3 / 2}}{(1+\sqrt{r})^{2}}=\frac{\frac{1}{2} r\left(4+3 r^{1 / 2}\right)}{(1+\sqrt{r})^{2}}=\frac{r(4+3 \sqrt{r})}{2(1+\sqrt{r})^{2}}$
41. $f(x)=\frac{x}{x+c / x} \Rightarrow f^{\prime}(x)=\frac{(x+c / x)(1)-x\left(1-c / x^{2}\right)}{\left(x+\frac{c}{x}\right)^{2}}=\frac{x+c / x-x+c / x}{\left(\frac{x^{2}+c}{x}\right)^{2}}=\frac{2 c / x}{\frac{\left(x^{2}+c\right)^{2}}{x^{2}}} \cdot \frac{x^{2}}{x^{2}}=\frac{2 c x}{\left(x^{2}+c\right)^{2}}$
51. $y=\frac{2 x}{x+1} \Rightarrow y^{\prime}=\frac{(x+1)(2)-(2 x)(1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}$. At $(1,1), y^{\prime}=\frac{1}{2}$, and an equation of the tangent line is $y-1=\frac{1}{2}(x-1)$, or $y=\frac{1}{2} x+\frac{1}{2}$.
53. $y=f(x)=x+\sqrt{x} \Rightarrow f^{\prime}(x)=1+\frac{1}{2} x^{-1 / 2}$. So the slope of the tangent line at $(1,2)$ is $f^{\prime}(1)=1+\frac{1}{2}(1)=\frac{3}{2}$ and its equation is $y-2=\frac{3}{2}(x-1)$ or $y=\frac{3}{2} x+\frac{1}{2}$.

55. (a) $y=f(x)=\frac{1}{1+x^{2}} \Rightarrow f^{\prime}(x)=\frac{\left(1+x^{2}\right)(0)-1(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$. So the slope of the tangent line at the point $\left(-1, \frac{1}{2}\right)$ is $f^{\prime}(-1)=\frac{2}{2^{2}}=\frac{1}{2}$ and its equation is $y-\frac{1}{2}=\frac{1}{2}(x+1)$ or $y=\frac{1}{2} x+1$.
(b)

57. We are given that $f(5)=1, f^{\prime}(5)=6, g(5)=-3$, and $g^{\prime}(5)=2$.
(a) $(f g)^{\prime}(5)=f(5) g^{\prime}(5)+g(5) f^{\prime}(5)=(1)(2)+(-3)(6)=2-18=-16$
(b) $\left(\frac{f}{g}\right)^{\prime}(5)=\frac{g(5) f^{\prime}(5)-f(5) g^{\prime}(5)}{[g(5)]^{2}}=\frac{(-3)(6)-(1)(2)}{(-3)^{2}}=-\frac{20}{9}$
(c) $\left(\frac{g}{f}\right)^{\prime}(5)=\frac{f(5) g^{\prime}(5)-g(5) f^{\prime}(5)}{[f(5)]^{2}}=\frac{(1)(2)-(-3)(6)}{(1)^{2}}=20$
61. (a) From the graphs of f and g, we obtain the following values: $f(1)=2$ since the point $(1,2)$ is on the graph of $f ; g(1)=1$ since the point $(1,1)$ is on the graph of $g ; f^{\prime}(1)=2$ since the slope of the line segment between $(0,0)$ and $(2,4)$ is $\frac{4-0}{2-0}=2 ; g^{\prime}(1)=-1$ since the slope of the line segment between $(-2,4)$ and $(2,0)$ is $\frac{0-4}{2-(-2)}=-1$. Now $u(x)=f(x) g(x)$, so $u^{\prime}(1)=f(1) g^{\prime}(1)+g(1) f^{\prime}(1)=2 \cdot(-1)+1 \cdot 2=0$.
(b) $v(x)=f(x) / g(x)$, so $v^{\prime}(5)=\frac{g(5) f^{\prime}(5)-f(5) g^{\prime}(5)}{[g(5)]^{2}}=\frac{2\left(-\frac{1}{3}\right)-3 \cdot \frac{2}{3}}{2^{2}}=\frac{-\frac{8}{3}}{4}=-\frac{2}{3}$
63. (a) $y=x g(x) \Rightarrow y^{\prime}=x g^{\prime}(x)+g(x) \cdot 1=x g^{\prime}(x)+g(x)$
(b) $y=\frac{x}{g(x)} \Rightarrow y^{\prime}=\frac{g(x) \cdot 1-x g^{\prime}(x)}{[g(x)]^{2}}=\frac{g(x)-x g^{\prime}(x)}{[g(x)]^{2}}$
(c) $y=\frac{g(x)}{x} \Rightarrow y^{\prime}=\frac{x g^{\prime}(x)-g(x) \cdot 1}{(x)^{2}}=\frac{x g^{\prime}(x)-g(x)}{x^{2}}$
67. $y=x^{3}-x^{2}-x+1$ has a horizontal tangent when $y^{\prime}=3 x^{2}-2 x-1=0 \cdot(3 x+1)(x-1)=0 \Leftrightarrow$ $x=1$ or $-\frac{1}{3}$. Therefore, the points are $(1,0)$ and $\left(-\frac{1}{3}, \frac{32}{27}\right)$.
71. $y=6 x^{3}+5 x-3 \Rightarrow m=y^{\prime}=18 x^{2}+5$, but $x^{2} \geq 0$ for all x, so $m \geq 5$ for all x.
83. $y=f(x)=a x^{2} \Rightarrow f^{\prime}(x)=2 a x$. So the slope of the tangent to the parabola at $x=2$ is $m=2 a(2)=4 a$. The slope of the given line, $2 x+y=b \Leftrightarrow y=-2 x+b$, is seen to be -2 , so we must have $4 a=-2 \Leftrightarrow a=-\frac{1}{2}$. So when $x=2$, the point in question has y-coordinate $-\frac{1}{2} \cdot 2^{2}=-2$. Now we simply require that the given line, whose equation is $2 x+y=b$, pass through the point $(2,-2): \backslash 2(2)+(-2)=b \Leftrightarrow b=2$. So we must have $a=-\frac{1}{2}$ and $b=2$.

