1. Note: Your answers may vary depending on your estimates. By estimating the slopes of tangent lines on the graph of f, it appears that
(a) $f^{\prime}(1) \approx-2$
(b) $f^{\prime}(2) \approx 0.8$
(c) $f^{\prime}(3) \approx-1$
(d) $f^{\prime}(4) \approx-0.5$

2. (a) $\quad(a)^{\prime}=\mathrm{II}$, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0 , then positive, then 0 , then negative again. The actual function values in graph II follow the same pattern.
(b) $\quad(b)^{\prime}=$ IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.
(c) $\quad(c)^{\prime}=\mathrm{I}$, since the slopes of the tangents to graph (c) are negative for $x<0$ and positive for $x>0$, as are the function values of graph I.
(d) $\quad(d)^{\prime}=$ III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0 , then negative, then 0 , then positive, then 0 , then negative again, and the function values in graph III follow the same pattern.

Hints for Exercises 5 - 13: First plot x-intercepts on the graph of f^{\prime} for any horizontal tangents on the graph of f . Look for any corners on the graph of f - there will be a discontinuity on the graph of f^{\prime}. On any interval where f has a tangent with positive (or negative) slope, the graph of f ' will be positive (or negative). If the graph of the function is linear, the graph of $\mathrm{f}{ }^{\prime}$ will be a horizontal line.
5.

10.

23.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-3(x+h)+5\right]-\left(x^{3}-3 x+5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-3 x-3 h+5\right)-\left(x^{3}-3 x+5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-3 h}{h}=\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}-3\right)}{h} \\
= & \lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}-3\right)=3 x^{2}-3
\end{aligned}
$$

Domain of $f=$ domain of $f^{\prime}=R$.
25.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{1+2(x+h)}-\sqrt{1+2 x}}{h}\left[\frac{\sqrt{1+2(x+h)}+\sqrt{1+2 x}}{\sqrt{1+2(x+h)}+\sqrt{1+2 x}}\right] \\
& =\lim _{h \rightarrow 0} \frac{(1+2 x+2 h)-(1+2 x)}{h[\sqrt{1+2(x+h)}+\sqrt{1+2 x}]}=\lim _{h \rightarrow 0} \frac{2}{\sqrt{1+2 x+2 h}+\sqrt{1+2 x}}=\frac{2}{2 \sqrt{1+2 x}}=\frac{1}{\sqrt{1+2 x}}
\end{aligned}
$$

Domain of $g=\left[-\frac{1}{2}, \infty\right)$, domain of $g^{\prime}=\left(-\frac{1}{2}, \infty\right)$.
27.

$$
\begin{aligned}
G^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{G(t+h)-G(t)}{h}=\lim _{h \rightarrow 0} \frac{\frac{4(t+h)}{(t+h)+1}-\frac{4 t}{t+1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{4(t+h)(t+1)-4 t(t+h+1)}{(t+h+1)(t+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(4 t^{2}+4 h t+4 t+4 h\right)-\left(4 t^{2}+4 h t+4 t\right)}{h(t+h+1)(t+1)} \\
& =\lim _{h \rightarrow 0} \frac{4 h}{h(t+h+1)(t+1)}=\lim _{h \rightarrow 0} \frac{4}{(t+h+1)(t+1)}=\frac{4}{(t+1)^{2}}
\end{aligned}
$$

Domain of $G=$ domain of $G^{\prime}=(-\infty,-1) \cup(-1, \infty)$.
35. f is not differentiable at $x=-1$ or at $x=11$ because the graph has vertical tangents at those points; at $x=4$, because there is a discontinuity there; and at $x=8$, because the graph has a corner there.
43. (a) $f(x)=x|x|=\left\{\begin{array}{lll}\mathrm{x}^{2} & \text { if } \mathrm{x} \geq 0 \\ -\mathrm{x}^{2} & \text { if } \mathrm{x}<0\end{array}\right.$

(b) Since $f(x)=x^{2}$ for $x \geq 0$, we have $f^{\prime}(x)=2 x$ for $x>0$. Similarly, since $f(x)=-x^{2}$ for $x<0$, we have $f^{\prime}(x)=-2 x$ for $x<0$. At $x=0$, we have
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x|x|}{x}=\lim _{x \rightarrow 0}|x|=0$.
So f is differentiable at 0 . Thus, f is differentiable for all x.
(c) From part (b), we have $f^{\prime}(x)=\left\{\begin{array}{ll}2 \mathrm{x} & \text { if } \mathrm{x} \geq 0 \\ -2 \mathrm{x} & \text { if } \mathrm{x}<0\end{array}\right\}=2|x|$.

