1. From Definition 1, $\lim _{x \rightarrow 4} f(x)=f(4)$.

$$
x \rightarrow 4
$$

3. (a) The following are the numbers at which $f$ is discontinuous and the type of discontinuity at that number: -4 (removable), -2 ( jump), 2 ( jump), 4 (infinite).
(b) $f$ is continuous from the left at -2 since $\lim f(x)=f(-2) . f$ is continuous from the right at 2 and $x \rightarrow-2^{-}$
4 since $\lim f(x)=f(2)$ and $\lim f(x)=f(4)$. It is continuous from neither side at -4 since $f(-4)$ is

$$
x \rightarrow 2^{+} \quad x \rightarrow 4^{+}
$$

undefined.
7. (a)

(b) There are discontinuities at times $t=1,2,3$, and 4. A person parking in the lot would want to keep in mind that the charge will jump at the beginning of each hour.
9. Since $f$ and $g$ are continuous functions,

$$
\begin{aligned}
\lim _{x \rightarrow 3}[2 f(x)-g(x)] & \left.=2 \lim _{x \rightarrow 3} f(x)-\lim _{x \rightarrow 3} g(x) \text { [by Limit Laws } 2 \text { and } 3\right] \\
& =2 f(3)-g(3)[\text { by continuity of } f \text { and } g \text { at } x=3] \\
& =2 \cdot 5-g(3)=10-g(3)
\end{aligned}
$$

Since it is given that $\lim [2 f(x)-g(x)]=4$, we have $10-g(3)=4$, so $g(3)=6$.

$$
x \rightarrow 3
$$

17. $f(x)= \begin{cases}1-\mathrm{x}^{2} & \text { if } \mathrm{x}<1 \\ 1 / \mathrm{x} & \text { if } \mathrm{x} \geq 1\end{cases}$

The left-hand limit of $f$ at $a=1$ is
$\lim f(x)=\lim \left(1-x^{2}\right)=0$. The right-hand limit of $f$ at $a=1$ is $\lim f(x)=\lim (1 / x)=1$. Since these limits $x \rightarrow 1^{-} \quad x \rightarrow 1^{-} \quad x \rightarrow 1^{+} \quad x \rightarrow 1^{+}$ are not equal, $\lim _{x \rightarrow 1} f(x)$ does not exist and $f$ is discontinuous at 1 .

33. $f(x)=\left\{\begin{array}{cl}\mathrm{x}^{2} & \text { if } \mathrm{x}<1 \\ \sqrt{x} & \text { if } \mathrm{x} \geq 1\end{array}\right.$

By Theorem 5 , since $f(x)$ equals the polynomial $x^{2}$ on $(-\infty, 1), f$ is continuous on $(-\infty, 1)$. By
Theorem 7, since $f(x)$ equals the root function $\sqrt{x}$ on $(1, \infty), f$ is continuous on $(1, \infty)$. At $x=1$, $\lim f(x)=\lim x^{2}=1$ and $\lim f(x)=\lim \sqrt{x}=1$. Thus, $\lim f(x)$ exists and equals 1 . Also, $f(1)=\sqrt{1}=1$. $x \rightarrow 1^{-} \quad x \rightarrow 1^{-} \quad x \rightarrow 1^{+} \quad x \rightarrow 1^{+} \quad x \rightarrow 1$
Thus, $f$ is continuous at $x=1$. We conclude that $f$ is continuous on $(-\infty, \infty)$.
35. $f(x)=\left\{\begin{array}{lll}1+\mathrm{x}^{2} & \text { if } \mathrm{x} \leq 0 \\ 2-\mathrm{x} & \text { if } 0<\mathrm{x} \leq 2 \\ (\mathrm{x}-2)^{2} & \text { if } \mathrm{x}>2\end{array}\right.$
$f$ is continuous on $(-\infty, 0),(0,2)$, and $(2, \infty)$ since it is a polynomial on each of these intervals. Now $\lim f(x)=\lim \left(1+x^{2}\right)=1$ and
$x \rightarrow 0^{-} \quad x \rightarrow 0^{-}$

$\lim f(x)=\lim (2-x)=2$, so $f$ is discontinuous at 0 . Since $f(0)=1, f$ is continuous from the left at 0 . $x \rightarrow 0^{+} \quad x \rightarrow 0^{+}$
Also, $\lim f(x)=\lim (2-x)=0, \lim f(x)=\lim (x-2)^{2}=0$, and $f(2)=0$, so $f$ is continuous at 2. The only $x \rightarrow 2^{-} \quad x \rightarrow 2^{-} \quad x \rightarrow 2^{+} \quad x \rightarrow 2^{+}$ number at which $f$ is discontinuous is 0 .
39. $f$ is continuous on $(-\infty, 3)$ and $(3, \infty)$. Now $\lim f(x)=\lim (c x+1)=3 c+1$ and

$$
x \rightarrow 3^{-} \quad x \rightarrow 3^{-}
$$

$\lim _{+^{+}} f(x)=\lim _{+}\left(c x^{2}-1\right)=9 c-1$. So $f$ is continuous $\Leftrightarrow 3 c+1=9 c-1 \Leftrightarrow 6 c=2 \Leftrightarrow c=\frac{1}{3}$. Thus, for $f$ to be $x \rightarrow 3^{+} \quad x \rightarrow 3^{+}$
continuous on $(-\infty, \infty), c=\frac{1}{3}$.
43. $f(x)=x^{3}-x^{2}+x$ is continuous on the interval $[2,3], f(2)=6$, and $f(3)=21$. Since $6<10<21$, there is a number $c$ in $(2,3)$ such that $f(c)=10$ by the Intermediate Value Theorem.

