1. (a) To have $5 x+3$ within a distance of 0.1 of 13 , we must have $12.9 \leq 5 x+3 \leq 13.1 \Rightarrow$ $9.9 \leq 5 x \leq 10.1 \Rightarrow 1.98 \leq x \leq 2.02$. Thus, x must be within 0.02 units of 2 so that $5 x+3$ is within 0.1 of 13.
(b) Use 0.01 in place of 0.1 in part (a) to obtain 0.002 .
2. On the left side of $x=2$, we need $|x-2|<\left|\frac{10}{7}-2\right|=\frac{4}{7}$. On the right side, we need $|x-2|<\left|\frac{10}{3}-2\right|=\frac{4}{3}$. For both of these conditions to be satisfied at once, we need the more restrictive of the two to hold, that is, $|x-2|<\frac{4}{7}$. So we can choose $\delta=\frac{4}{7}$, or any smaller positive number.
3. The leftmost question mark is the solution of $\sqrt{x}=1.6$ and the rightmost, $\sqrt{x}=2.4$. So the values are $1.6^{2}=2.56$ and $2.4^{2}=5.76$. On the left side, we need $|x-4|<|2.56-4|=1.44$. On the right side, we need $|x-4|<|5.76-4|=1.76$. To satisfy both conditions, we need the more restrictive condition to hold -namely, $|x-4|<1.44$. Thus, we can choose $\delta=1.44$, or any smaller positive number.
4. $|\sqrt{4 x+1}-3|<0.5 \Leftrightarrow 2.5<\sqrt{4 x+1}<3.5$. We plot the three parts of this inequality on the same screen and identify the x-coordinates of the points of intersection using the cursor. It appears that the inequality holds for $1.3125 \leq x \leq 2.8125$. Since $|2-1.3125|=0.6875$ and $|2-2.8125|=0.8125$, we choose $0<\delta<\min \{0.6875,0.8125\}=0.6875$.

5. (a) $A=\pi r^{2}$ and $A=1000 \mathrm{~cm}^{2} \Rightarrow \pi r^{2}=1000 \Rightarrow r^{2}=\frac{1000}{\pi} \Rightarrow$
$r=\sqrt{\frac{1000}{\pi}} \quad[r>0] \approx 17.8412 \mathrm{~cm}$.
(b) $|A-1000| \leq 5 \Rightarrow-5 \leq \pi r^{2}-1000 \leq 5 \Rightarrow 1000-5 \leq \pi r^{2} \leq 1000+5 \Rightarrow$
$\sqrt{\frac{995}{\pi}} \leq r \leq \sqrt{\frac{1005}{\pi}} \Rightarrow 17.7966 \leq r \leq 17.8858 \cdot \sqrt{\frac{1000}{\pi}}-\sqrt{\frac{995}{\pi}} \approx 0.04466$ and
$\sqrt{\frac{1005}{\pi}}-\sqrt{\frac{1000}{\pi}} \approx 0.04455$. So if the machinist gets the radius within 0.0445 cm of 17.8412 ,
the area will be within 5 cm

2
of 1000 .
(c) x is the radius, $f(x)$ is the area, a is the target radius given in part (a), L is the target area (1000), ε is the tolerance in the area (5), and δ is the tolerance in the radius given in part (b).
41. $\frac{1}{(x+3)^{4}}>10,000 \Leftrightarrow(x+3)^{4}<\frac{1}{10,000} \Leftrightarrow|x+3|<\frac{1}{\sqrt[4]{10,000}} \Leftrightarrow|x-(-3)|<\frac{1}{10}$

